These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 27916714)
1. Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients With Initial Parafoveal Scotoma and Peripheral Nasal Step. Yoo E; Yoo C; Lee TE; Kim YY Am J Ophthalmol; 2017 Mar; 175():30-36. PubMed ID: 27916714 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic Ability of Retinal Vessel Diameter Measurements in Open-Angle Glaucoma. Yoo E; Yoo C; Lee BR; Lee TE; Kim YY Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7915-22. PubMed ID: 26670828 [TBL] [Abstract][Full Text] [Related]
3. Difference in the posterior pole profiles associated with the initial location of visual field defect in early-stage normal tension glaucoma. Choi JA; Park HY; Park CK Acta Ophthalmol; 2015 Mar; 93(2):e94-9. PubMed ID: 24975750 [TBL] [Abstract][Full Text] [Related]
4. Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss. Shin HY; Park HL; Jung KI; Choi JA; Park CK Ophthalmology; 2014 Jan; 121(1):93-99. PubMed ID: 23962652 [TBL] [Abstract][Full Text] [Related]
5. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients With Central Visual Field Defects. Kwon J; Choi J; Shin JW; Lee J; Kook MS Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1637-1645. PubMed ID: 28297029 [TBL] [Abstract][Full Text] [Related]
6. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma: a quantitative optic coherence tomography angiographic study. Xu H; Zhai R; Zong Y; Kong X; Jiang C; Sun X; He Y; Li X Graefes Arch Clin Exp Ophthalmol; 2018 Jun; 256(6):1179-1186. PubMed ID: 29450622 [TBL] [Abstract][Full Text] [Related]
7. Retinal vessel phenotype in patients with primary open-angle glaucoma. Chiquet C; Gavard O; Arnould L; Mautuit T; Macgillivray TJ; Bron AM; Semecas R; Trucco E; Florent A Acta Ophthalmol; 2020 Feb; 98(1):e88-e93. PubMed ID: 31359603 [TBL] [Abstract][Full Text] [Related]
8. Association of intraocular pressure-related factors and retinal vessel diameter with optic disc rim area in subjects with and without primary open angle glaucoma. Zhang Q; Jan C; Guo CY; Wang FH; Liang YB; Cao K; Zhang Z; Yang DY; Thomas R; Wang NL; Clin Exp Ophthalmol; 2018 May; 46(4):389-399. PubMed ID: 28858414 [TBL] [Abstract][Full Text] [Related]
9. Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma. Wong A; Matheos K; Prime Z; Danesh-Meyer HV Graefes Arch Clin Exp Ophthalmol; 2017 Nov; 255(11):2219-2226. PubMed ID: 28875349 [TBL] [Abstract][Full Text] [Related]
10. Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma. Jung KI; Kang MK; Choi JA; Shin HY; Park CK Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):420-8. PubMed ID: 26848881 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Visual Field Progression Rates Among the High Tension Glaucoma, Primary Angle Closure Glaucoma, and Normal Tension Glaucoma. Ballae Ganeshrao S; Senthil S; Choudhari N; Sri Durgam S; Garudadri CS Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):889-900. PubMed ID: 30835290 [TBL] [Abstract][Full Text] [Related]
12. Clinical Clues to Predict the Presence of Parafoveal Scotoma on Humphrey 10-2 Visual Field Using a Humphrey 24-2 Visual Field. Park HY; Hwang BE; Shin HY; Park CK Am J Ophthalmol; 2016 Jan; 161():150-9. PubMed ID: 26476213 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Diurnal Fluctuation in Parafoveal and Peripapillary Vascular Density Using Optical Coherence Tomography Angiography in Patients with Exfoliative Glaucoma and Primary Open-Angle Glaucoma. Demirtaş AA; Karahan M; Ava S; Çilem Han Ç; Keklikçi U Curr Eye Res; 2021 Jan; 46(1):96-106. PubMed ID: 32546011 [TBL] [Abstract][Full Text] [Related]
14. Lamina Cribrosa Morphology in Normal Tension Glaucoma According to the Location of Visual Field Defects. Kang YS; Haowei Z; Sung MS; Park SW J Glaucoma; 2023 Jun; 32(6):466-473. PubMed ID: 36897662 [TBL] [Abstract][Full Text] [Related]
15. Relationship Between Central Retinal Vessel Trunk Location and Visual Field Loss in Glaucoma. Wang M; Wang H; Pasquale LR; Baniasadi N; Shen LQ; Bex PJ; Elze T Am J Ophthalmol; 2017 Apr; 176():53-60. PubMed ID: 28088508 [TBL] [Abstract][Full Text] [Related]
16. Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography. Khanal S; Davey PG; Racette L; Thapa M Clin Exp Optom; 2016 Jul; 99(4):373-81. PubMed ID: 26996257 [TBL] [Abstract][Full Text] [Related]
17. Difference in the properties of retinal nerve fiber layer defect between superior and inferior visual field loss in glaucoma. Choi JA; Park HY; Jung KI; Hong KH; Park CK Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6982-90. PubMed ID: 24030460 [TBL] [Abstract][Full Text] [Related]
18. No Relationship between Visual Field Damage and Choroidal Thickness in Eyes with Primary Open-Angle Glaucoma. Karaca U; Ozge G; Mumcuoglu T; Usta G Ophthalmic Res; 2020; 63(5):491-496. PubMed ID: 31905359 [TBL] [Abstract][Full Text] [Related]
19. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation. Sung MS; Heo H; Ji YS; Park SW Eye (Lond); 2017 Jul; 31(7):1051-1059. PubMed ID: 28282064 [TBL] [Abstract][Full Text] [Related]