These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 27916748)

  • 1. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol.
    Noe F; Polster J; Geithe C; Kotthoff M; Schieberle P; Krautwurst D
    Chem Senses; 2017 Mar; 42(3):195-210. PubMed ID: 27916748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling by statistical physics and interpretation of the olfactory process of the two enantiomers 3-mercapto-2-methylbutan-1-ol and 3-mercapto-2-methylpentan-1-ol on the OR2M3 human olfactory receptor.
    Smati H; Ben Torkia Y; Ben Khemis I; Aouaini F; Ben Lamine A; Znaidia S
    Int J Biol Macromol; 2023 Jul; 243():124896. PubMed ID: 37268074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitation of the intense aroma compound 3-mercapto-2-methylpentan-1-ol in raw and processed onions (Allium cepa) of different origins and in other Allium varieties using a stable isotope dilution assay.
    Granvogl M; Christlbauer M; Schieberle P
    J Agric Food Chem; 2004 May; 52(10):2797-802. PubMed ID: 15137816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplifying the Odor Landscape.
    Trimmer C; Mainland JD
    Chem Senses; 2017 Mar; 42(3):177-179. PubMed ID: 28200040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3.
    Haag F; Ahmed L; Reiss K; Block E; Batista VS; Krautwurst D
    Cell Mol Life Sci; 2020 Jun; 77(11):2157-2179. PubMed ID: 31435697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Mercapto-2-methylpentan-1-ol, a new powerful aroma compound.
    Widder S; Sabater Lüntzel C; Dittner T; Pickenhagen W
    J Agric Food Chem; 2000 Feb; 48(2):418-23. PubMed ID: 10691650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Odor Correlations in Homologous Series of Mercaptoalkanols.
    Polster J; Schieberle P
    J Agric Food Chem; 2017 May; 65(21):4329-4340. PubMed ID: 28478679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Broadly Tuned Odorant Receptor OR1A1 is Highly Selective for 3-Methyl-2,4-nonanedione, a Key Food Odorant in Aged Wines, Tea, and Other Foods.
    Geithe C; Noe F; Kreissl J; Krautwurst D
    Chem Senses; 2017 Mar; 42(3):181-193. PubMed ID: 27916747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.
    Schoenauer S; Schieberle P
    J Agric Food Chem; 2016 May; 64(19):3849-61. PubMed ID: 27121638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The key food odorant receptive range of broadly tuned receptor OR2W1.
    Haag F; Di Pizio A; Krautwurst D
    Food Chem; 2022 May; 375():131680. PubMed ID: 34857413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Odor Correlations in Homologous Series of Mercapto Furans and Mercapto Thiophenes Synthesized by Changing the Structural Motifs of the Key Coffee Odorant Furan-2-ylmethanethiol.
    Schoenauer S; Schieberle P
    J Agric Food Chem; 2018 Apr; 66(16):4189-4199. PubMed ID: 29627982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors.
    Haag F; Hoffmann S; Krautwurst D
    J Agric Food Chem; 2021 Sep; 69(37):10999-11005. PubMed ID: 34496214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odorant-receptor interactions and odor percept: a chemical perspective.
    Triller A; Boulden EA; Churchill A; Hatt H; Englund J; Spehr M; Sell CS
    Chem Biodivers; 2008 Jun; 5(6):862-86. PubMed ID: 18618409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining In Vivo and In Vitro Approaches To Identify Human Odorant Receptors Responsive to Food Odorants.
    Armelin-Correa LM; Malnic B
    J Agric Food Chem; 2018 Mar; 66(10):2214-2218. PubMed ID: 28054485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the key aroma compounds in beef and pork vegetable gravies a la chef by stable isotope dilution assays and aroma recombination experiments.
    Christlbauer M; Schieberle P
    J Agric Food Chem; 2011 Dec; 59(24):13122-30. PubMed ID: 22077665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding the Odor of Cigarette Smoke.
    McClintock TS; Khan N; Alimova Y; Aulisio M; Han DY; Breheny P
    J Neurosci; 2020 Sep; 40(37):7043-7053. PubMed ID: 32801155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the Absolute Configurations and Sensory Properties of the Enantiomers of a Homologous Series (C6-C10) of 2-Mercapto-4-alkanones.
    Kiske C; Riegel AD; Hopf R; Kvindt A; Poplacean I; Taniguchi T; Swamy MMM; Monde K; Eisenreich W; Engel KH
    J Agric Food Chem; 2019 Jan; 67(4):1187-1196. PubMed ID: 30602274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odorant detection in a locust exhibits unusually low redundancy.
    Chang H; Unni AP; Tom MT; Cao Q; Liu Y; Wang G; Llorca LC; Brase S; Bucks S; Weniger K; Bisch-Knaden S; Hansson BS; Knaden M
    Curr Biol; 2023 Dec; 33(24):5427-5438.e5. PubMed ID: 38070506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor discrimination by G protein-coupled olfactory receptors.
    Touhara K
    Microsc Res Tech; 2002 Aug; 58(3):135-41. PubMed ID: 12203691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Basis of Mammalian Odor Discrimination: A Status Report.
    Block E
    J Agric Food Chem; 2018 Dec; 66(51):13346-13366. PubMed ID: 30453735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.