These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27916853)

  • 1. A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field.
    Hou J; Sun Y; Sun L; Pan B; Huang Z; Wu J; Zhang Z
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation.
    Song Z; Zhang S
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HD-sEMG-based research on activation heterogeneity of skeletal muscles and the joint force estimation during elbow flexion.
    Zhang C; Chen X; Cao S; Zhang X; Chen X
    J Neural Eng; 2018 Oct; 15(5):056027. PubMed ID: 30010094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elbow-flexion force estimation during arm posture dynamically changing between pronation and supination.
    Hu R; Chen X; Huang C; Cao S; Zhang X; Chen X
    J Neural Eng; 2019 Oct; 16(6):066005. PubMed ID: 31261136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural control of single degree-of-freedom elbow movements. Effect of starting joint position.
    Prodoehl J; Gottlieb GL; Corcos DM
    Exp Brain Res; 2003 Nov; 153(1):7-15. PubMed ID: 14566444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity.
    Ellis MD; Acosta AM; Yao J; Dewald JP
    Exp Brain Res; 2007 Feb; 176(4):594-602. PubMed ID: 16924488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual muscle force parameters and fiber operating ranges for elbow flexion-extension and forearm pronation-supination.
    Hale R; Dorman D; Gonzalez RV
    J Biomech; 2011 Feb; 44(4):650-6. PubMed ID: 21145061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the fast orthogonal search method to estimate optimal joint angle for upper limb Hill-muscle models.
    Mountjoy K; Morin E; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):790-8. PubMed ID: 19932992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation.
    Bueno DR; Montano L
    J Neural Eng; 2017 Apr; 14(2):026011. PubMed ID: 28079030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between young and older women in maximal force, force fluctuations, and surface EMG during isometric knee extension and elbow flexion.
    Bazzucchi I; Felici F; Macaluso A; De Vito G
    Muscle Nerve; 2004 Nov; 30(5):626-35. PubMed ID: 15389720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEMG signal analysis at acupressure points for elbow movement.
    Ryait HS; Arora AS; Agarwal R
    J Electromyogr Kinesiol; 2011 Oct; 21(5):868-76. PubMed ID: 21816622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mechanical assistance on muscle activity and motor performance during isometric elbow flexion.
    Choi J; Yeoh WL; Matsuura S; Loh PY; Muraki S
    J Electromyogr Kinesiol; 2020 Feb; 50():102380. PubMed ID: 31841884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
    Castro MC; Colombini EL; Aquino PT; Arjunan SP; Kumar DK
    Biomed Eng Online; 2014 Nov; 13():155. PubMed ID: 25422006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a musculoskeletal model of the elbow joint complex.
    Gonzalez RV; Hutchins EL; Barr RE; Abraham LD
    J Biomech Eng; 1996 Feb; 118(1):32-40. PubMed ID: 8833072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.