These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27916906)

  • 1. Enabling Smart Air Conditioning by Sensor Development: A Review.
    Cheng CC; Lee D
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart sensors enable smart air conditioning control.
    Cheng CC; Lee D
    Sensors (Basel); 2014 Jun; 14(6):11179-203. PubMed ID: 24961213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Infrared Sensor-Based Occupancy Monitoring in Smart Buildings: A Review of Methodologies and Machine Learning Approaches.
    Shokrollahi A; Persson JA; Malekian R; Sarkheyli-Hägele A; Karlsson F
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless, AI-enabled wearable thermal comfort sensor for energy-efficient, human-in-the-loop control of indoor temperature.
    Cho S; Nam HJ; Shi C; Kim CY; Byun SH; Agno KC; Lee BC; Xiao J; Sim JY; Jeong JW
    Biosens Bioelectron; 2023 Mar; 223():115018. PubMed ID: 36549111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Open Source "Smart Lamp" for the Optimization of Plant Systems and Thermal Comfort of Offices.
    Salamone F; Belussi L; Danza L; Ghellere M; Meroni I
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum Energy Management for Air Conditioners in IoT-Enabled Smart Home.
    Philip A; Islam SN; Phillips N; Anwar A
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Human Thermal Comfort for Cyber-Physical Human Centric System in Smart Homes.
    Fang Y; Lim Y; Ooi SE; Zhou C; Tan Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.
    Li X; Xu C; Wang K; Yang X; Li Y
    Int J Biometeorol; 2023 Aug; 67(8):1335-1344. PubMed ID: 37347280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The COVID-19 impact on air condition usage: a shift towards residential energy saving.
    Aliero MS; Pasha MF; Toosi AN; Ghani I
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):85727-85741. PubMed ID: 35001275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Light Powered Sensor Networks for Thermal Comfort Measurement.
    Lee D
    Sensors (Basel); 2008 Oct; 8(10):6417-6432. PubMed ID: 27873877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System.
    Rajeswari Subramaniam K; Cheng CT; Pang TY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal control of cooling management system for energy conservation in smart home with ANNs-PSO data analytics microservice platform.
    Sirisumrannukul S; Intaraumnauy T; Piamvilai N
    Heliyon; 2024 Mar; 10(6):e26937. PubMed ID: 38496856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Ionogel-Based Fibers for Strain Sensors with Ultrawide Linear Response and Temperature Sensors Insensitive to Strain.
    Wang F; Chen J; Cui X; Liu X; Chang X; Zhu Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30268-30278. PubMed ID: 35758312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of thermal environment and human thermal comfort in 8 types of public places from 2019 to 2021].
    Zhu JY; Zhang X; Huang CH; Wang L; Chen R; Ding XL
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2023 Mar; 41(3):189-197. PubMed ID: 37006144
    [No Abstract]   [Full Text] [Related]  

  • 15. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Implementation of a Low-Energy-Consumption Air-Conditioning Control System for Smart Vehicle.
    Weng CL; Kau LJ
    J Healthc Eng; 2019; 2019():3858560. PubMed ID: 31534644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.
    Giaconia C; Orioli A; Di Gangi A
    Appl Ergon; 2015 May; 48():202-13. PubMed ID: 25683547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy simulation and CFD coupled analysis for the optimal operation of combined convection and radiant air conditioning considering dehumidification.
    Yamamoto T; Ozaki A; Aratsu K; Fukui R
    Heliyon; 2023 Jul; 9(7):e18092. PubMed ID: 37539116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions.
    Malik A; Bongers C; McBain B; Rey-Lescure O; Dear R; Capon A; Lenzen M; Jay O
    Lancet Planet Health; 2022 Apr; 6(4):e301-e309. PubMed ID: 35397218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.