These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27917107)

  • 1. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.
    Blankertz B; Acqualagna L; Dähne S; Haufe S; Schultze-Kraft M; Sturm I; Ušćumlic M; Wenzel MA; Curio G; Müller KR
    Front Neurosci; 2016; 10():530. PubMed ID: 27917107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Berlin Brain-Computer Interface: Non-Medical Uses of BCI Technology.
    Blankertz B; Tangermann M; Vidaurre C; Fazli S; Sannelli C; Haufe S; Maeder C; Ramsey L; Sturm I; Curio G; Müller KR
    Front Neurosci; 2010; 4():198. PubMed ID: 21165175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.
    Millán JD; Rupp R; Müller-Putz GR; Murray-Smith R; Giugliemma C; Tangermann M; Vidaurre C; Cincotti F; Kübler A; Leeb R; Neuper C; Müller KR; Mattia D
    Front Neurosci; 2010; 4():. PubMed ID: 20877434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural indicators of the depth of cognitive processing for user-adaptive neurotechnological applications.
    Nicolae IE; Acqualagna L; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1484-7. PubMed ID: 26736551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances and current trends in brain-computer interface research and their applications.
    Zabcikova M; Koudelkova Z; Jasek R; Lorenzo Navarro JJ
    Int J Dev Neurosci; 2022 Apr; 82(2):107-123. PubMed ID: 34939217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.
    Zander TO; Kothe C
    J Neural Eng; 2011 Apr; 8(2):025005. PubMed ID: 21436512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
    Müller KR; Tangermann M; Dornhege G; Krauledat M; Curio G; Blankertz B
    J Neurosci Methods; 2008 Jan; 167(1):82-90. PubMed ID: 18031824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
    Tariq M; Trivailo PM; Simic M
    Front Hum Neurosci; 2018; 12():312. PubMed ID: 30127730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of practicality of EEG-based brain-computer interface].
    Lin H; He Q; Yan Q; Feng Z; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):702-6. PubMed ID: 20649048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Covert Speech From EEG-A Comprehensive Review.
    Panachakel JT; Ramakrishnan AG
    Front Neurosci; 2021; 15():642251. PubMed ID: 33994922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges.
    Yadav D; Yadav S; Veer K
    J Neurosci Methods; 2020 Dec; 346():108918. PubMed ID: 32853592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of brain-computer interface games and an opinion survey from researchers, developers and users.
    Ahn M; Lee M; Choi J; Jun SC
    Sensors (Basel); 2014 Aug; 14(8):14601-33. PubMed ID: 25116904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain computer interfaces, a review.
    Nicolas-Alonso LF; Gomez-Gil J
    Sensors (Basel); 2012; 12(2):1211-79. PubMed ID: 22438708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.