BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27917169)

  • 21. Sulfur Metabolism of
    Jiang L; Lyu J; Shao Z
    Front Microbiol; 2017; 8():2513. PubMed ID: 29312214
    [No Abstract]   [Full Text] [Related]  

  • 22. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria.
    Norris PR; Clark DA; Owen JP; Waterhouse S
    Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():775-783. PubMed ID: 8936305
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Clark DA; Norris PR
    Microbiology (Reading); 1996 Apr; 142(4):785-790. PubMed ID: 33725781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium.
    Bogdanova TI; Tsaplina IA; Kondrat'eva TF; Duda VI; Suzina NE; Melamud VS; Tourova TP; Karavaiko GI
    Int J Syst Evol Microbiol; 2006 May; 56(Pt 5):1039-1042. PubMed ID: 16627651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations.
    Johnson DB; Joulian C; d'Hugues P; Hallberg KB
    Extremophiles; 2008 Nov; 12(6):789-98. PubMed ID: 18719854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic insights into iron-sulfur clusters and flavin oxidation of a novel xanthine oxidoreductase from Sulfobacillus acidophilus TPY.
    Pimviriyakul P; Sucharitakul J; Maenpuen S
    FEBS J; 2024 Feb; 291(3):527-546. PubMed ID: 37899720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From Genes to Bioleaching: Unraveling Sulfur Metabolism in
    Ibáñez A; Garrido-Chamorro S; Coque JJR; Barreiro C
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent.
    Slobodkin AI; Reysenbach AL; Slobodkina GB; Kolganova TV; Kostrikina NA; Bonch-Osmolovskaya EA
    Int J Syst Evol Microbiol; 2013 Jun; 63(Pt 6):1967-1971. PubMed ID: 23024145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Sequencing of
    Dai X; Wang H; Zhang Z; Li K; Zhang X; Mora-López M; Jiang C; Liu C; Wang L; Zhu Y; Hernández-Ascencio W; Dong Z; Huang L
    Front Microbiol; 2016; 7():1902. PubMed ID: 27965637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Sulfur Oxygenase Reductase Activity Assay: Catalyzing a Reaction with Elemental Sulfur as Substrate at High Temperatures.
    Rühl P; Kletzin A
    Bio Protoc; 2017 Jul; 7(14):e2403. PubMed ID: 34541134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Sulfur metabolism enzymes in thermoacidophilus bacteria Sulfobacillus sibiricus].
    Krasil'nikova EN; Bogdanova TI; Zakharchuk LM; Tsaplina IA
    Prikl Biokhim Mikrobiol; 2004; 40(1):62-5. PubMed ID: 15029700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.
    Amenabar MJ; Boyd ES
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of chalcopyrite by defined mixed moderately thermophilic consortium including a marine acidophilic halotolerant bacterium.
    Wang Y; Su L; Zhang L; Zeng W; Wu J; Wan L; Qiu G; Chen X; Zhou H
    Bioresour Technol; 2012 Oct; 121():348-54. PubMed ID: 22864170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilic Sulfolobales.
    Zeldes BM; Loder AJ; Counts JA; Haque M; Widney KA; Keller LM; Albers SV; Kelly RM
    Environ Microbiol; 2019 Oct; 21(10):3696-3710. PubMed ID: 31188531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans.
    Nie ZY; Liu HC; Xia JL; Zhu HR; Ma CY; Zheng L; Zhao YD; Qiu GZ
    Res Microbiol; 2014 Oct; 165(8):639-46. PubMed ID: 25261719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent.
    Slobodkin AI; Reysenbach AL; Slobodkina GB; Baslerov RV; Kostrikina NA; Wagner ID; Bonch-Osmolovskaya EA
    Int J Syst Evol Microbiol; 2012 Nov; 62(Pt 11):2565-2571. PubMed ID: 22199218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria.
    Romero R; Viedma P; Cotoras D
    Biodegradation; 2024 Apr; 35(2):195-208. PubMed ID: 37639168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria.
    Mardanov AV; Beletsky AV; Kadnikov VV; Slobodkin AI; Ravin NV
    Front Microbiol; 2016; 7():950. PubMed ID: 27379079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center.
    Anantharaman K; Breier JA; Dick GJ
    ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.