These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27917822)

  • 1. Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration.
    Yang GH; Kim M; Kim G
    Biofabrication; 2016 Dec; 9(1):015005. PubMed ID: 27917822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid PCL/collagen scaffold consisting of solid freeform-fabricated struts and EHD-direct-jet-processed fibrous threads for tissue regeneration.
    Yang GH; Kim M; Kim G
    J Colloid Interface Sci; 2015 Jul; 450():159-167. PubMed ID: 25818355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.
    Kim MS; Kim G
    Carbohydr Polym; 2014 Dec; 114():213-221. PubMed ID: 25263884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.
    Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G
    Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically reinforced cell-laden scaffolds formed using alginate-based bioink printed onto the surface of a PCL/alginate mesh structure for regeneration of hard tissue.
    Kim YB; Lee H; Yang GH; Choi CH; Lee D; Hwang H; Jung WK; Yoon H; Kim GH
    J Colloid Interface Sci; 2016 Jan; 461():359-368. PubMed ID: 26409783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.
    Lee H; Kim G
    J Colloid Interface Sci; 2014 Sep; 430():315-25. PubMed ID: 24974244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.
    Lee SH; Cho YS; Hong MW; Lee BK; Park Y; Park SH; Kim YY; Cho YS
    Biomed Mater; 2017 Sep; 12(5):055003. PubMed ID: 28762959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration.
    Ostrowska B; Di Luca A; Szlazak K; Moroni L; Swieszkowski W
    J Biomed Mater Res A; 2016 Apr; 104(4):991-1001. PubMed ID: 26749200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration.
    Ahn SH; Lee HJ; Kim GH
    Biomacromolecules; 2011 Dec; 12(12):4256-63. PubMed ID: 22070169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration.
    Yeo M; Lee H; Kim G
    Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2.
    Jang CH; Kim MS; Cho YB; Jang YS; Kim GH
    Int J Biol Macromol; 2013 Nov; 62():614-22. PubMed ID: 24145300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities.
    Kim YB; Kim GH
    ACS Comb Sci; 2015 Feb; 17(2):87-99. PubMed ID: 25541639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance.
    Fonseca DR; Sobreiro-Almeida R; Sol PC; Neves NM
    Biomater Sci; 2018 May; 6(6):1569-1579. PubMed ID: 29708246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.