These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27917894)

  • 1. A closer look into the α-helix basin.
    Haimov B; Srebnik S
    Sci Rep; 2016 Dec; 6():38341. PubMed ID: 27917894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
    Kuster DJ; Liu C; Fang Z; Ponder JW; Marshall GR
    PLoS One; 2015; 10(4):e0123146. PubMed ID: 25894612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanded turn conformations: characterization and sequence-structure correspondence in alpha-turns with implications in helix folding.
    Dasgupta B; Pal L; Basu G; Chakrabarti P
    Proteins; 2004 May; 55(2):305-15. PubMed ID: 15048823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation.
    Pal L; Chakrabarti P; Basu G
    J Mol Biol; 2003 Feb; 326(1):273-91. PubMed ID: 12547209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational features of a hexapeptide model Ac-TGAAKA-NH2 corresponding to a hydrated alpha helical segment from glyceraldehyde 3-phosphate dehydrogenase: implications for the role of turns in helix folding.
    Sasidhar YU; Ramakrishna V
    Indian J Biochem Biophys; 2000 Feb; 37(1):34-44. PubMed ID: 10983411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3(10)-helices in proteins are parahelices.
    Enkhbayar P; Hikichi K; Osaki M; Kretsinger RH; Matsushima N
    Proteins; 2006 Aug; 64(3):691-9. PubMed ID: 16783793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Relation between α-Helical Conformation and Amyloidogenicity.
    Haimov B; Srebnik S
    Biophys J; 2018 Apr; 114(8):1869-1877. PubMed ID: 29653837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the helical arrangements of protein molecules.
    Dauter Z; Jaskolski M
    Protein Sci; 2018 Mar; 27(3):643-652. PubMed ID: 29194829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental conformational energy maps of proteins and peptides.
    Balaji GA; Nagendra HG; Balaji VN; Rao SN
    Proteins; 2017 Jun; 85(6):979-1001. PubMed ID: 28168743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.
    Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B
    J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of terminal achiral and chiral residues on the conformational behaviour of poly Δ(z)Phe and analysis of various interactions.
    Nandel FS; Kaur H
    Indian J Biochem Biophys; 2003 Aug; 40(4):265-73. PubMed ID: 22900319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-inserted alpha-helical segments implicate reverse turns as folding intermediates.
    Sundaralingam M; Sekharudu YC
    Science; 1989 Jun; 244(4910):1333-7. PubMed ID: 2734612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study.
    Houndonougbo Y; Kuczera K; Jas GS
    J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of solvent molecules on the stereochemical code of glycyl residues in proteins.
    Eswar N; Nagarajaram HA; Ramakrishnan C; Srinivasan N
    Proteins; 2002 Nov; 49(3):326-34. PubMed ID: 12360522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments.
    Dima RI; Thirumalai D
    Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV resonance Raman measurements of poly-L-lysine's conformational energy landscapes: dependence on perchlorate concentration and temperature.
    Ma L; Ahmed Z; Mikhonin AV; Asher SA
    J Phys Chem B; 2007 Jul; 111(26):7675-80. PubMed ID: 17567063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding propensities of peptide fragments of myoglobin.
    Reymond MT; Merutka G; Dyson HJ; Wright PE
    Protein Sci; 1997 Mar; 6(3):706-16. PubMed ID: 9070453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides.
    Goyal B; Kumar A; Srivastava KR; Durani S
    J Biomol Struct Dyn; 2017 Jul; 35(9):1923-1935. PubMed ID: 27310440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV resonance Raman determination of polyproline II, extended 2.5(1)-helix, and beta-sheet Psi angle energy landscape in poly-L-lysine and poly-L-glutamic acid.
    Mikhonin AV; Myshakina NS; Bykov SV; Asher SA
    J Am Chem Soc; 2005 Jun; 127(21):7712-20. PubMed ID: 15913361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.