These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27917900)

  • 1. Self-cleaning of Surfaces: the Role of Surface Wettability and Dust Types.
    Quan YY; Zhang LZ; Qi RH; Cai RR
    Sci Rep; 2016 Dec; 6():38239. PubMed ID: 27917900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet Rolling and Spinning in V-Shaped Hydrophobic Surfaces for Environmental Dust Mitigation.
    Yakubu M; Yilbas BS; Abubakr AA; Al-Qahtani H
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32635187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet Impinging Behavior on Surfaces with Wettability Contrasts.
    Farshchian B; Pierce J; Beheshti MS; Park S; Kim N
    Microelectron Eng; 2018 Aug; 195():50-56. PubMed ID: 30270957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonated water droplets on a dusty hydrophobic surface.
    Abubakar AA; Yilbas BS; Al-Qahtani H; Hassan G; Yakubu M; Hatab SB
    Soft Matter; 2020 Aug; 16(30):7144-7155. PubMed ID: 32666999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.
    Wisdom KM; Watson JA; Qu X; Liu F; Watson GS; Chen CH
    Proc Natl Acad Sci U S A; 2013 May; 110(20):7992-7. PubMed ID: 23630277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water Droplet Dynamics on a Hydrophobic Surface in Relation to the Self-Cleaning of Environmental Dust.
    Yilbas BS; Hassan G; Al-Sharafi A; Ali H; Al-Aqeeli N; Al-Sarkhi A
    Sci Rep; 2018 Feb; 8(1):2984. PubMed ID: 29445222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Cleaning Mechanism: Why Nanotexture and Hydrophobicity Matter.
    Heckenthaler T; Sadhujan S; Morgenstern Y; Natarajan P; Bashouti M; Kaufman Y
    Langmuir; 2019 Dec; 35(48):15526-15534. PubMed ID: 31469282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why a lotus-like superhydrophobic surface is self-cleaning? An explanation from surface force measurements and analysis.
    Yu M; Chen S; Zhang B; Qiu D; Cui S
    Langmuir; 2014 Nov; 30(45):13615-21. PubMed ID: 25335800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet fluid infusion into a dust layer in relation to self-cleaning.
    Hassan G; Yilbas BS; Al-Qahtani H
    RSC Adv; 2020 Aug; 10(53):32034-32042. PubMed ID: 35518135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dust removal from a hydrophobic surface by rolling fizzy water droplets.
    Yilbas BS; Hassan G; Al-Qahtani H; Bahatab S; Sahin AZ; Al-Sharafi A; Abubakar AA
    RSC Adv; 2020 May; 10(34):19811-19821. PubMed ID: 35520448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.
    Toma M; Loget G; Corn RM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Not All Sizes of Dust can be Removed by Jumping Condensates on Superhydrophobic Surfaces.
    Li K; Ma D; Zhu C; Yang J; Zhang J; Feng J
    ACS Omega; 2023 Feb; 8(6):5731-5741. PubMed ID: 36816689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.
    Xu QF; Liu Y; Lin FJ; Mondal B; Lyons AM
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8915-24. PubMed ID: 23889192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-cleaning of a hydrophobic surface by a rolling water droplet.
    Hassan G; Yilbas BS; Al-Sharafi A; Al-Qahtani H
    Sci Rep; 2019 Apr; 9(1):5744. PubMed ID: 30952932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Cleaning Porous Surfaces for Dry Condensation.
    Liu K; Huang Z; Hemmatifar A; Oyarzun DI; Zhou J; Santiago JG
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26759-26764. PubMed ID: 30059209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.