These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27917956)

  • 1. A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics.
    Morad MR; Rajabi A; Razavi M; Sereshkeh SR
    Sci Rep; 2016 Dec; 6():38509. PubMed ID: 27917956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs.
    Singh SK; Subramanian A
    RSC Adv; 2020 Jun; 10(42):25022-25028. PubMed ID: 35517438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed electrospraying of water in cone-jet mode using a UV-embossed pyramidal micronozzle film.
    Jeong JH; Park K; Kim H; Park I; Choi J; Lee SS
    Microsyst Nanoeng; 2022; 8():110. PubMed ID: 36187890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-Jet Mode.
    Tang K; Gomez A
    J Colloid Interface Sci; 1996 Dec; 184(2):500-11. PubMed ID: 8978553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid.
    Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing.
    Pan Y; Zeng L
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field.
    Zupan B; Peña-Murillo GE; Zahoor R; Gregorc J; Šarler B; Knoška J; Gañán-Calvo AM; Chapman HN; Bajt S
    Front Mol Biosci; 2023; 10():1006733. PubMed ID: 36743214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of the Micro-Jet Formation in Double Flow Focusing Nozzle Geometry Using Different Water-Alcohol Solutions.
    Belšak G; Bajt S; Šarler B
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Start-up stage with improved resolution for an electric field-assisted fused deposition.
    Ruihan X; Weijie B; Zhihai W; Yaohong W
    RSC Adv; 2021 Feb; 11(13):7397-7404. PubMed ID: 35423235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion evaporation from the surface of a Taylor cone.
    Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016304. PubMed ID: 12935243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Nozzle Geometry on Characteristics of Submerged Gas Jet and Bubble Noise.
    Bie HY; Ye JJ; Hao ZR
    J Lab Autom; 2016 Oct; 21(5):652-9. PubMed ID: 25931138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Y-Jet Nozzle Mixing Chamber Length and the GLR on Spatial Asymmetric Spray.
    Lee SJ; Kim JY; Hong JG
    ACS Omega; 2021 Jul; 6(26):16795-16803. PubMed ID: 34250339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexing the electrified meniscus: the birth of a jet in electrosprays.
    Marginean I; Parvin L; Heffernan L; Vertes A
    Anal Chem; 2004 Jul; 76(14):4202-7. PubMed ID: 15253664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spraying mode effect on droplet formation and ion chemistry in electrosprays.
    Nemes P; Marginean I; Vertes A
    Anal Chem; 2007 Apr; 79(8):3105-16. PubMed ID: 17378541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigations on characteristics of stable water electrospray in air without discharge.
    Park I; Hong WS; Kim SB; Kim SS
    Phys Rev E; 2017 Jun; 95(6-1):063110. PubMed ID: 28709264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nozzle and liquid effects on the spray modes in nanoelectrospray.
    Paine MD; Alexander MS; Stark JP
    J Colloid Interface Sci; 2007 Jan; 305(1):111-23. PubMed ID: 17028003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
    Umemura A; Kawanabe S; Suzuki S; Osaka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036309. PubMed ID: 22060494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillating dispersed-phase co-flow microfluidic droplet generation: jet length reduction effect.
    Shams Khorrami A; Rezai P
    Soft Matter; 2018 Dec; 14(48):9870-9876. PubMed ID: 30474087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.