These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27918033)

  • 1. Investigating the behavior of various cocatalysts on LaTaON
    Si W; Pergolesi D; Haydous F; Fluri A; Wokaun A; Lippert T
    Phys Chem Chem Phys; 2016 Dec; 19(1):656-662. PubMed ID: 27918033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Three-Dimensional Branched TiO
    Liu C; Zhang C; Yin G; Zhang T; Wang W; Ou G; Jin H; Chen Z
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13301-13310. PubMed ID: 33723983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting.
    Wang L; Zhu J; Liu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.
    Landsmann S; Surace Y; Trottmann M; Dilger S; Weidenkaff A; Pokrant S
    ACS Appl Mater Interfaces; 2016 May; 8(19):12149-57. PubMed ID: 27159411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tungsten phosphide cocatalyst enhanced bismuth tungstate photoanode with the robust built-in electric field towards highly efficient photoelectrochemical water splitting.
    Leng X; Bai J; Dai Z; Man S; Lei B; Yao J; Bai L; Gao H; Xu L
    J Colloid Interface Sci; 2024 May; 661():1-11. PubMed ID: 38295691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving BiVO4 photoanodes for solar water splitting through surface passivation.
    Liang Y; Messinger J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12014-20. PubMed ID: 24845546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights.
    Chen R; Meng L; Xu W; Li L
    Small; 2024 Jan; 20(1):e2304807. PubMed ID: 37653598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CoO
    Niishiro R; Takano Y; Jia Q; Yamaguchi M; Iwase A; Kuang Y; Minegishi T; Yamada T; Domen K; Kudo A
    Chem Commun (Camb); 2017 Jan; 53(3):629-632. PubMed ID: 27982147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface defect passivation of Ta
    Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H
    J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes.
    Chang X; Wang T; Zhang P; Zhang J; Li A; Gong J
    J Am Chem Soc; 2015 Jul; 137(26):8356-9. PubMed ID: 26091246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passivation of the surface imperfection of TiO
    Pi H; Zhang D; Zhang X; Jin Z; Zhang L; Cui X; Zheng W
    Dalton Trans; 2017 Dec; 47(1):209-214. PubMed ID: 29200222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the impact of A-site cation change on photocatalytic H
    Hojamberdiev M; Bekheet MF; Hart JN; Vequizo JJM; Yamakata A; Yubuta K; Gurlo A; Hasegawa M; Domen K; Teshima K
    Phys Chem Chem Phys; 2017 Aug; 19(33):22210-22220. PubMed ID: 28799586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into interface charge regulation through the change of the electrolyte temperature toward enhancing photoelectrochemical water oxidation.
    Zhang Q; Ning X; Fan Y; Yin D; Zhao H; Zhang Z; Du P; Lu X
    J Colloid Interface Sci; 2021 Apr; 588():31-39. PubMed ID: 33387823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation.
    Higashi M; Domen K; Abe R
    J Am Chem Soc; 2012 Apr; 134(16):6968-71. PubMed ID: 22489629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced solar water-splitting activity of novel nanostructured Fe
    Wang M; Wu X; Huang K; Sun Y; Zhang Y; Zhang H; He J; Chen H; Ding J; Feng S
    Nanoscale; 2018 Apr; 10(14):6678-6683. PubMed ID: 29589032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.
    Klotz D; Grave DA; Rothschild A
    Phys Chem Chem Phys; 2017 Aug; 19(31):20383-20392. PubMed ID: 28721404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.