These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27918413)

  • 1. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
    Tang Z; Sun S; Zhang S; Chen Y; Li C; Chen S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between electrical brain responses to motor imagery and motor impairment in stroke.
    Kaiser V; Daly I; Pichiorri F; Mattia D; Müller-Putz GR; Neuper C
    Stroke; 2012 Oct; 43(10):2735-40. PubMed ID: 22895995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI.
    Tariq M; Trivailo PM; Simic M
    PLoS One; 2020; 15(3):e0230184. PubMed ID: 32182270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative EEG Evaluation During Robot-Assisted Foot Movement.
    Formaggio E; Masiero S; Bosco A; Izzi F; Piccione F; Del Felice A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1633-1640. PubMed ID: 27845668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Paradigm Design of a Novel 2-class Unilateral Upper Limb Motor Imagery Tasks and its EEG Signal Classification.
    Qiu W; Yang B; Ma J; Gao S; Zhu Y; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():152-155. PubMed ID: 34891260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton.
    Choi J; Kim KT; Jeong JH; Kim L; Lee SJ; Kim H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries.
    Morash V; Bai O; Furlani S; Lin P; Hallett M
    Clin Neurophysiol; 2008 Nov; 119(11):2570-8. PubMed ID: 18845473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal brain-controlled system for rehabilitation training: Combining asynchronous online brain-computer interface and exoskeleton.
    Liu L; Li J; Ouyang R; Zhou D; Fan C; Liang W; Li F; Lv Z; Wu X
    J Neurosci Methods; 2024 Jun; 406():110132. PubMed ID: 38604523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface.
    Moaveninejad S; D'Onofrio V; Tecchio F; Ferracuti F; Iarlori S; Monteriù A; Porcaro C
    Comput Methods Programs Biomed; 2024 Feb; 244():107944. PubMed ID: 38064955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-directed motor imagery of the lower limb enhances event-related desynchronization.
    Kitahara K; Hayashi Y; Yano S; Kondo T
    PLoS One; 2017; 12(9):e0184245. PubMed ID: 28926593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.