BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27918540)

  • 1. In vivo quantification of spatially varying mechanical properties in developing tissues.
    Serwane F; Mongera A; Rowghanian P; Kealhofer DA; Lucio AA; Hockenbery ZM; Campàs O
    Nat Methods; 2017 Feb; 14(2):181-186. PubMed ID: 27918540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development.
    Träber N; Uhlmann K; Girardo S; Kesavan G; Wagner K; Friedrichs J; Goswami R; Bai K; Brand M; Werner C; Balzani D; Guck J
    Sci Rep; 2019 Nov; 9(1):17031. PubMed ID: 31745109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic optical tweezers-based in vivo manipulations in zebrafish embryos.
    Hörner F; Meissner R; Polali S; Pfeiffer J; Betz T; Denz C; Raz E
    J Biophotonics; 2017 Nov; 10(11):1492-1501. PubMed ID: 28164445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring mechanical properties of embryos and embryonic tissues.
    Davidson L; Keller R
    Methods Cell Biol; 2007; 83():425-39. PubMed ID: 17613319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
    Mongera A; Rowghanian P; Gustafson HJ; Shelton E; Kealhofer DA; Carn EK; Serwane F; Lucio AA; Giammona J; Campàs O
    Nature; 2018 Sep; 561(7723):401-405. PubMed ID: 30185907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially distinct domains of cell behavior in the zebrafish organizer region.
    D'Amico LA; Cooper MS
    Biochem Cell Biol; 1997; 75(5):563-77. PubMed ID: 9551180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish.
    Marlow F; Gonzalez EM; Yin C; Rojo C; Solnica-Krezel L
    Development; 2004 Jan; 131(1):203-16. PubMed ID: 14660439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.
    Fusco S; Panzetta V; Embrione V; Netti PA
    Acta Biomater; 2015 Sep; 23():63-71. PubMed ID: 26004223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the cellular mechanical microenvironment - from bulk mechanics to the nanoscale.
    Matellan C; Del Río Hernández AE
    J Cell Sci; 2019 Apr; 132(9):. PubMed ID: 31040223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible Cantilevers for Mechanical Characterization of Zebrafish Embryos using Image Analysis.
    Tomizawa Y; Dixit K; Daggett D; Hoshino K
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A toolbox to explore the mechanics of living embryonic tissues.
    Campàs O
    Semin Cell Dev Biol; 2016 Jul; 55():119-30. PubMed ID: 27061360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative approach to study endothelial cilia bending stiffness during blood flow mechanodetection in vivo.
    Boselli F; Goetz JG; Charvin G; Vermot J
    Methods Cell Biol; 2015; 127():161-73. PubMed ID: 25837390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical interferometry of nanoscale motion and local mechanical properties of living zebrafish embryos.
    Reed J; Ramakrishnan S; Schmit J; Gimzewski JK
    ACS Nano; 2009 Aug; 3(8):2090-4. PubMed ID: 19591446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The creep behavior of acrylic denture base resins.
    Sadiku ER; Biotidara FO
    J Biomater Appl; 1996 Jan; 10(3):250-61. PubMed ID: 8667176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology.
    Shao Y; Sang J; Fu J
    Biomaterials; 2015 Jun; 52():26-43. PubMed ID: 25818411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of biocompatible droplets for in vivo and in vitro measurement of cell-generated mechanical stresses.
    Lucio AA; Ingber DE; Campàs O
    Methods Cell Biol; 2015; 125():373-90. PubMed ID: 25640439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
    Cook CA; Huri PY; Ginn BP; Gilbert-Honick J; Somers SM; Temple JP; Mao HQ; Grayson WL
    Biotechnol Bioeng; 2016 Aug; 113(8):1825-37. PubMed ID: 26825810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging.
    Schlüßler R; Möllmert S; Abuhattum S; Cojoc G; Müller P; Kim K; Möckel C; Zimmermann C; Czarske J; Guck J
    Biophys J; 2018 Sep; 115(5):911-923. PubMed ID: 30122291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.