These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27918621)

  • 1. Single particle raster image analysis of diffusion.
    Longfils M; Schuster E; Lorén N; Särkkä A; Rudemo M
    J Microsc; 2017 Apr; 266(1):3-14. PubMed ID: 27918621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single particle raster image analysis of diffusion for particle mixtures.
    Longfils M; Röding M; Altskär A; Schuster E; Lorén N; Särkkä A; Rudemo M
    J Microsc; 2018 Mar; 269(3):269-281. PubMed ID: 28862754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic range and background filtering in raster image correlation spectroscopy.
    DE Mets R; Delon A; Balland M; Destaing O; Wang I
    J Microsc; 2020 Aug; 279(2):123-138. PubMed ID: 32441342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary-Region Raster Image Correlation Spectroscopy.
    Hendrix J; Dekens T; Schrimpf W; Lamb DC
    Biophys J; 2016 Oct; 111(8):1785-1796. PubMed ID: 27760364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps.
    Scipioni L; Di Bona M; Vicidomini G; Diaspro A; Lanzanò L
    Commun Biol; 2018; 1():10. PubMed ID: 30271897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raster image correlation spectroscopy in live cells.
    Rossow MJ; Sasaki JM; Digman MA; Gratton E
    Nat Protoc; 2010 Nov; 5(11):1761-74. PubMed ID: 21030952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection.
    Gielen E; Smisdom N; vandeVen M; De Clercq B; Gratton E; Digman M; Rigo JM; Hofkens J; Engelborghs Y; Ameloot M
    Langmuir; 2009 May; 25(9):5209-18. PubMed ID: 19260653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raster Image Correlation Spectroscopy Performance Evaluation.
    Longfils M; Smisdom N; Ameloot M; Rudemo M; Lemmens V; Fernández GS; Röding M; Lorén N; Hendrix J; Särkkä A
    Biophys J; 2019 Nov; 117(10):1900-1914. PubMed ID: 31668746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the Lateral Diffusion of Plasma Membrane Receptors Using Raster Image Correlation Spectroscopy.
    Makaremi S; Moran-Mirabal J
    Methods Mol Biol; 2022; 2440():289-303. PubMed ID: 35218546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells.
    Nieves DJ; Li Y; Fernig DG; Lévy R
    R Soc Open Sci; 2015 Jun; 2(6):140454. PubMed ID: 26543570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope.
    Brown CM; Dalal RB; Hebert B; Digman MA; Horwitz AR; Gratton E
    J Microsc; 2008 Jan; 229(Pt 1):78-91. PubMed ID: 18173647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping diffusion in a living cell via the phasor approach.
    Ranjit S; Lanzano L; Gratton E
    Biophys J; 2014 Dec; 107(12):2775-2785. PubMed ID: 25517145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raster image correlation spectroscopy as a novel tool for the quantitative assessment of protein diffusional behaviour in solution.
    Hamrang Z; Pluen A; Zindy E; Clarke D
    J Pharm Sci; 2012 Jun; 101(6):2082-93. PubMed ID: 22434660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.
    Laňková M; Humpolíčková J; Vosolsobě S; Cit Z; Lacek J; Čovan M; Čovanová M; Hof M; Petrášek J
    Microsc Microanal; 2016 Apr; 22(2):290-9. PubMed ID: 27041337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk-free multicolor RICS using spectral weighting.
    Schrimpf W; Lemmens V; Smisdom N; Ameloot M; Lamb DC; Hendrix J
    Methods; 2018 May; 140-141():97-111. PubMed ID: 29408283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pixel-based likelihood framework for analysis of fluorescence recovery after photobleaching data.
    Jonasson JK; Lorén N; Olofsson P; Nydén M; Rudemo M
    J Microsc; 2008 Nov; 232(2):260-9. PubMed ID: 19017225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence microscopy data for quantitative mobility and interaction analysis of proteins in living cells.
    Lemmens V; Ramanathan K; Hendrix J
    Data Brief; 2020 Apr; 29():105348. PubMed ID: 32181308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEASUREMENT of Protein 53 Diffusion Coefficient in Live HeLa Cells Using Raster Image Correlation Spectroscopy (RICS).
    Hong S; Wang YN; Yamaguchi H; Sreenivasappa H; Chou CK; Tsou PH; Hung MC; Kameoka J
    J Biomater Nanobiotechnol; 2010 Oct; 1(1):31-36. PubMed ID: 21804949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
    Gröner N; Capoulade J; Cremer C; Wachsmuth M
    Opt Express; 2010 Sep; 18(20):21225-37. PubMed ID: 20941019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy.
    Röding M; Billeter M
    J Microsc; 2018 Apr; ():. PubMed ID: 29676793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.