BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 27918797)

  • 1. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction.
    Szczesny SE; Mauck RL
    J Biomech Eng; 2017 Feb; 139(2):0210061-02100616. PubMed ID: 27918797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease.
    Maurer M; Lammerding J
    Annu Rev Biomed Eng; 2019 Jun; 21():443-468. PubMed ID: 30916994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model.
    Jean RP; Chen CS; Spector AA
    J Biomech Eng; 2005 Aug; 127(4):594-600. PubMed ID: 16121529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the cell nucleus in mechanotransduction.
    Janota CS; Calero-Cuenca FJ; Gomes ER
    Curr Opin Cell Biol; 2020 Apr; 63():204-211. PubMed ID: 32361559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus.
    Guilluy C; Osborne LD; Van Landeghem L; Sharek L; Superfine R; Garcia-Mata R; Burridge K
    Nat Cell Biol; 2014 Apr; 16(4):376-81. PubMed ID: 24609268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface.
    Aureille J; Belaadi N; Guilluy C
    Curr Opin Cell Biol; 2017 Feb; 44():59-67. PubMed ID: 27876470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular mechanosensing: getting to the nucleus of it all.
    Fedorchak GR; Kaminski A; Lammerding J
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):76-92. PubMed ID: 25008017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Between a rock and a soft place: recent progress in understanding matrix mechanics.
    Moraes C
    Integr Biol (Camb); 2015 Jul; 7(7):736-9. PubMed ID: 26076130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency affine mechanics and nonaffine relaxation in a model cytoskeleton.
    Head DA; Ikebe E; Nakamasu A; Zhang P; Villaruz LG; Kinoshita S; Ando S; Mizuno D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042711. PubMed ID: 24827282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear mechanotransduction: forcing the nucleus to respond.
    Guilluy C; Burridge K
    Nucleus; 2015; 6(1):19-22. PubMed ID: 25738642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental techniques for study of chromatin mechanics in intact nuclei and living cells.
    Verstraeten VL; Lammerding J
    Chromosome Res; 2008; 16(3):499-510. PubMed ID: 18461486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation.
    Mishra J; Chakraborty S; Niharika ; Roy A; Manna S; Baral T; Nandi P; Patra SK
    J Cell Biochem; 2024 Mar; 125(3):e30531. PubMed ID: 38345428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures.
    Kardas D; Nackenhorst U; Balzani D
    Biomech Model Mechanobiol; 2013 Jan; 12(1):167-83. PubMed ID: 22527364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleus feels the force, LINCed in or not!
    Jahed Z; Mofrad MR
    Curr Opin Cell Biol; 2019 Jun; 58():114-119. PubMed ID: 31002996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanotransduction and nuclear function.
    Graham DM; Burridge K
    Curr Opin Cell Biol; 2016 Jun; 40():98-105. PubMed ID: 27018929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.
    Chen C; Yin L; Song X; Yang H; Ren X; Gong X; Wang F; Yang L
    Biochem Biophys Res Commun; 2016 Jan; 469(1):132-137. PubMed ID: 26616052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the mechano-chemical behaviour of the nuclear pore complex: current research and perspectives.
    Garcia A; Rodriguez Matas JF; Raimondi MT
    Integr Biol (Camb); 2016 Oct; 8(10):1011-1021. PubMed ID: 27713975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear mechanics and mechanotransduction in health and disease.
    Isermann P; Lammerding J
    Curr Biol; 2013 Dec; 23(24):R1113-21. PubMed ID: 24355792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.