BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 27918921)

  • 1. PrAS: Prediction of amidation sites using multiple feature extraction.
    Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J
    Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set.
    Wuyun Q; Zheng W; Zhang Y; Ruan J; Hu G
    PLoS One; 2016; 11(5):e0155370. PubMed ID: 27183223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.
    Jia CZ; He WY; Yao YH
    J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Succinylation sites from protein sequences using ensemble support vector machine.
    Ning Q; Zhao X; Bao L; Ma Z; Zhao X
    BMC Bioinformatics; 2018 Jun; 19(1):237. PubMed ID: 29940836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutli-Features Prediction of Protein Translational Modification Sites.
    Bao W; Yuan CA; Zhang Y; Han K; Nandi AK; Honig B; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1453-1460. PubMed ID: 28961121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net.
    Liu Y; Yu Z; Chen C; Han Y; Yu B
    Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.