These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 27919068)

  • 1. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks.
    Olivares-Chauvet P; Mukamel Z; Lifshitz A; Schwartzman O; Elkayam NO; Lubling Y; Deikus G; Sebra RP; Tanay A
    Nature; 2016 Dec; 540(7632):296-300. PubMed ID: 27919068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycomb silencing: from linear chromatin domains to 3D chromosome folding.
    Cheutin T; Cavalli G
    Curr Opin Genet Dev; 2014 Apr; 25():30-7. PubMed ID: 24434548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling genome-wide topological associating domains in mouse embryonic stem cells.
    Zhan Y; Giorgetti L; Tiana G
    Chromosome Res; 2017 Mar; 25(1):5-14. PubMed ID: 28108933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture.
    Deng W; Blobel GA
    Methods Mol Biol; 2017; 1468():51-62. PubMed ID: 27662870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing.
    Li L; Lyu X; Hou C; Takenaka N; Nguyen HQ; Ong CT; Cubeñas-Potts C; Hu M; Lei EP; Bosco G; Qin ZS; Corces VG
    Mol Cell; 2015 Apr; 58(2):216-31. PubMed ID: 25818644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription.
    Giorgetti L; Galupa R; Nora EP; Piolot T; Lam F; Dekker J; Tiana G; Heard E
    Cell; 2014 May; 157(4):950-63. PubMed ID: 24813616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large scale genomic reorganization of topological domains at the HoxD locus.
    Fabre PJ; Leleu M; Mormann BH; Lopez-Delisle L; Noordermeer D; Beccari L; Duboule D
    Genome Biol; 2017 Aug; 18(1):149. PubMed ID: 28784160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
    Zhan Y; Mariani L; Barozzi I; Schulz EG; Blüthgen N; Stadler M; Tiana G; Giorgetti L
    Genome Res; 2017 Mar; 27(3):479-490. PubMed ID: 28057745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin Domains: The Unit of Chromosome Organization.
    Dixon JR; Gorkin DU; Ren B
    Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing high-resolution chromosome three-dimensional structures by Hi-C complex networks.
    Liu T; Wang Z
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):496. PubMed ID: 30591009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TADs are 3D structural units of higher-order chromosome organization in
    Szabo Q; Jost D; Chang JM; Cattoni DI; Papadopoulos GL; Bonev B; Sexton T; Gurgo J; Jacquier C; Nollmann M; Bantignies F; Cavalli G
    Sci Adv; 2018 Feb; 4(2):eaar8082. PubMed ID: 29503869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
    Nagano T; Lubling Y; Stevens TJ; Schoenfelder S; Yaffe E; Dean W; Laue ED; Tanay A; Fraser P
    Nature; 2013 Oct; 502(7469):59-64. PubMed ID: 24067610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are TADs supercoiled?
    Racko D; Benedetti F; Dorier J; Stasiak A
    Nucleic Acids Res; 2019 Jan; 47(2):521-532. PubMed ID: 30395328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into chromosomal conformations in cancer.
    Jia R; Chai P; Zhang H; Fan X
    Mol Cancer; 2017 Nov; 16(1):173. PubMed ID: 29149895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.