BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 27919072)

  • 1. Structure and regulation of the chromatin remodeller ISWI.
    Yan L; Wang L; Tian Y; Xia X; Chen Z
    Nature; 2016 Dec; 540(7633):466-469. PubMed ID: 27919072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes.
    Clapier CR; Cairns BR
    Nature; 2012 Dec; 492(7428):280-4. PubMed ID: 23143334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.
    Hwang WL; Deindl S; Harada BT; Zhuang X
    Nature; 2014 Aug; 512(7513):213-7. PubMed ID: 25043036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome.
    Chittori S; Hong J; Bai Y; Subramaniam S
    Nucleic Acids Res; 2019 Sep; 47(17):9400-9409. PubMed ID: 31402386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail.
    Ludwigsen J; Pfennig S; Singh AK; Schindler C; Harrer N; Forné I; Zacharias M; Mueller-Planitz F
    Elife; 2017 Jan; 6():. PubMed ID: 28109157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure.
    Liu X; Li M; Xia X; Li X; Chen Z
    Nature; 2017 Apr; 544(7651):440-445. PubMed ID: 28424519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding.
    Willhoft O; McCormack EA; Aramayo RJ; Bythell-Douglas R; Ocloo L; Zhang X; Wigley DB
    Elife; 2017 Jun; 6():. PubMed ID: 28585918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine.
    Mueller-Planitz F; Klinker H; Ludwigsen J; Becker PB
    Nat Struct Mol Biol; 2013 Jan; 20(1):82-9. PubMed ID: 23202585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of chromatin remodeler Swi2/Snf2 in the resting state.
    Xia X; Liu X; Li T; Fang X; Chen Z
    Nat Struct Mol Biol; 2016 Aug; 23(8):722-9. PubMed ID: 27399259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
    Clapier CR; Nightingale KP; Becker PB
    Nucleic Acids Res; 2002 Feb; 30(3):649-55. PubMed ID: 11809876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4.
    Klinker H; Mueller-Planitz F; Yang R; Forné I; Liu CF; Nordenskiöld L; Becker PB
    PLoS One; 2014; 9(2):e88411. PubMed ID: 24516652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI.
    Clapier CR; Längst G; Corona DF; Becker PB; Nightingale KP
    Mol Cell Biol; 2001 Feb; 21(3):875-83. PubMed ID: 11154274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling.
    Yan L; Wu H; Li X; Gao N; Chen Z
    Nat Struct Mol Biol; 2019 Apr; 26(4):258-266. PubMed ID: 30872815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties.
    Brehm A; Längst G; Kehle J; Clapier CR; Imhof A; Eberharter A; Müller J; Becker PB
    EMBO J; 2000 Aug; 19(16):4332-41. PubMed ID: 10944116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome-Chd1 structure and implications for chromatin remodelling.
    Farnung L; Vos SM; Wigge C; Cramer P
    Nature; 2017 Oct; 550(7677):539-542. PubMed ID: 29019976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ISWI chromatin remodeling: one primary actor or a coordinated effort?
    Bartholomew B
    Curr Opin Struct Biol; 2014 Feb; 24():150-5. PubMed ID: 24561830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of the ISWI chromatin remodeler family with new active complexes.
    Oppikofer M; Bai T; Gan Y; Haley B; Liu P; Sandoval W; Ciferri C; Cochran AG
    EMBO Rep; 2017 Oct; 18(10):1697-1706. PubMed ID: 28801535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.
    Dann GP; Liszczak GP; Bagert JD; Müller MM; Nguyen UTT; Wojcik F; Brown ZZ; Bos J; Panchenko T; Pihl R; Pollock SB; Diehl KL; Allis CD; Muir TW
    Nature; 2017 Aug; 548(7669):607-611. PubMed ID: 28767641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Architecture of the Nucleosome Remodeler ISWI Determined from Cross-Linking, Mass Spectrometry, SAXS, and Modeling.
    Harrer N; Schindler CEM; Bruetzel LK; Forné I; Ludwigsen J; Imhof A; Zacharias M; Lipfert J; Mueller-Planitz F
    Structure; 2018 Feb; 26(2):282-294.e6. PubMed ID: 29395785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins.
    Poot RA; Dellaire G; Hülsmann BB; Grimaldi MA; Corona DF; Becker PB; Bickmore WA; Varga-Weisz PD
    EMBO J; 2000 Jul; 19(13):3377-87. PubMed ID: 10880450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.