These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27919101)

  • 1. The risk of pedestrian collisions with peripheral visual field loss.
    Peli E; Apfelbaum H; Berson EL; Goldstein RB
    J Vis; 2016 Dec; 16(15):5. PubMed ID: 27919101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot study of a pedestrian collision detection test for a multisite trial of field expansion devices for hemianopia.
    Bowers AR; Manda S; Shekar S; Hwang AD; Jung JH; Peli E
    Optom Vis Sci; 2024 Jun; 101(6):408-416. PubMed ID: 38990239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Pedestrian Collision Detection With Peripheral Field Loss and the Impact of Peripheral Prisms.
    Qiu C; Jung JH; Tuccar-Burak M; Spano L; Goldstein R; Peli E
    Transl Vis Sci Technol; 2018; 7(5):1. PubMed ID: 30197833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.
    Quistberg DA; Howard EJ; Ebel BE; Moudon AV; Saelens BE; Hurvitz PM; Curtin JE; Rivara FP
    Accid Anal Prev; 2015 Nov; 84():99-111. PubMed ID: 26339944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driving with central field loss I: effect of central scotomas on responses to hazards.
    Bronstad PM; Bowers AR; Albu A; Goldstein R; Peli E
    JAMA Ophthalmol; 2013 Mar; 131(3):303-9. PubMed ID: 23329309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving with Central Visual Field Loss II: How Scotomas above or below the Preferred Retinal Locus (PRL) Affect Hazard Detection in a Driving Simulator.
    Bronstad PM; Albu A; Bowers AR; Goldstein R; Peli E
    PLoS One; 2015; 10(9):e0136517. PubMed ID: 26332315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study on the basis for a safe speed limit for bicycles on shared paths considering the severity of pedestrian head injuries in bicyclist-pedestrian collisions.
    Paudel M; Yap FF; Rosli TBM; Tan KH; Xu H; Vahdati N; Butt H; Shiryayev O
    Accid Anal Prev; 2022 Oct; 176():106792. PubMed ID: 35952395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field Expansion for Acquired Monocular Vision Using a Multiplexing Prism.
    Jung JH; Peli E
    Optom Vis Sci; 2018 Sep; 95(9):814-828. PubMed ID: 30169357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Older Adults at Increased Risk as Pedestrians in Victoria, Australia: An Examination of Crash Characteristics and Injury Outcomes.
    O'Hern S; Oxley J; Logan D
    Traffic Inj Prev; 2015; 16 Suppl 2():S161-7. PubMed ID: 26436227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field Expansion with Multiplexing Prism Glasses Improves Pedestrian Detection for Acquired Monocular Vision.
    Jung JH; Castle R; Kurukuti NM; Manda S; Peli E
    Transl Vis Sci Technol; 2020 Jul; 9(8):35. PubMed ID: 32855881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Relationship Between Objectively Measured Walking and Risk of Pedestrian-Motor Vehicle Collision.
    Quistberg DA; Howard EJ; Hurvitz PM; Moudon AV; Ebel BE; Rivara FP; Saelens BE
    Am J Epidemiol; 2017 May; 185(9):810-821. PubMed ID: 28338921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations.
    Zapf MP; Boon MY; Matteucci PB; Lovell NH; Suaning GJ
    J Neural Eng; 2015 Jun; 12(3):036001. PubMed ID: 25782059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic risk assessment for pedestrian-vehicle collision considering uncertainties of pedestrian mobility.
    Huang Z; Liu X; Song X; He Y
    Traffic Inj Prev; 2017 Aug; 18(6):650-656. PubMed ID: 28112561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedestrian signalization and the risk of pedestrian-motor vehicle collisions in Lima, Peru.
    Quistberg DA; Koepsell TD; Boyle LN; Miranda JJ; Johnston BD; Ebel BE
    Accid Anal Prev; 2014 Sep; 70():273-81. PubMed ID: 24821630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pedestrian injury patterns and risk in minibus collisions in China.
    Li K; Fan X; Yin Z
    Med Sci Monit; 2015 Mar; 21():727-34. PubMed ID: 25754962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Pedestrian Fractures in Collisions Between Small Cars and Pedestrians Based on Surveillance Videos.
    Miao Q; Zhang YL; Yang XA; Miao QF; Zhao WD; Tong F; Lan FC; Li DR
    Am J Forensic Med Pathol; 2022 Mar; 43(1):11-17. PubMed ID: 34510055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving with hemianopia: III. Detection of stationary and approaching pedestrians in a simulator.
    Alberti CF; Peli E; Bowers AR
    Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):368-74. PubMed ID: 24346175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measures of activity-based pedestrian exposure to the risk of vehicle-pedestrian collisions: space-time path vs. potential path tree methods.
    Yao S; Loo BP; Lam WW
    Accid Anal Prev; 2015 Feb; 75():320-32. PubMed ID: 25555021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transportation safety of elderly pedestrians: Modeling contributing factors to elderly pedestrian collisions.
    Kim D
    Accid Anal Prev; 2019 Oct; 131():268-274. PubMed ID: 31336314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.