BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27919420)

  • 1. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW
    Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species.
    Bao VW; Leung KM; Qiu JW; Lam MH
    Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A; Aoyama I
    Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis.
    Koutsaftis A; Aoyama I
    Environ Toxicol; 2006 Aug; 21(4):432-9. PubMed ID: 16841316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
    Wang H; Li Y; Huang H; Xu X; Wang Y
    Environ Toxicol Chem; 2011 Mar; 30(3):692-703. PubMed ID: 21154844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus).
    Johansson P; Eriksson KM; Axelsson L; Blanck H
    Arch Environ Contam Toxicol; 2012 Oct; 63(3):365-77. PubMed ID: 22743627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus.
    Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y
    Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays.
    Gatidou G; Thomaidis NS
    Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates.
    Bellas J
    Sci Total Environ; 2006 Aug; 367(2-3):573-85. PubMed ID: 16545431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
    Amara I; Miled W; Slama RB; Ladhari N
    Environ Toxicol Pharmacol; 2018 Jan; 57():115-130. PubMed ID: 29258017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051
    Moon YS; Kim M; Hong CP; Kang JH; Jung JH
    Ecotoxicol Environ Saf; 2019 Sep; 180():23-32. PubMed ID: 31059904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems.
    Martins SE; Fillmann G; Lillicrap A; Thomas KV
    Biofouling; 2018 Jan; 34(1):34-52. PubMed ID: 29250978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay.
    Bellas J
    Aquat Toxicol; 2008 Jul; 88(4):308-15. PubMed ID: 18586336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius).
    Xu X; Fu J; Wang H; Zhang B; Wang X; Wang Y
    Ecotoxicology; 2011 Mar; 20(2):419-28. PubMed ID: 21229388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.
    Konstantinou IK; Albanis TA
    Environ Int; 2004 Apr; 30(2):235-48. PubMed ID: 14749112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity of TBT and IRGAROL in Artemia salina.
    Panagoula B; Panayiota M; Iliopoulou-Georgudaki J
    Int J Toxicol; 2002; 21(3):231-3. PubMed ID: 12055024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality criteria derivation and tiered ecological risk evaluation of antifouling biocides in marine environment.
    Luo HW; Lin M; Bai XX; Xu B; Li M; Ding JJ; Hong WJ; Guo LH
    Mar Pollut Bull; 2023 Feb; 187():114500. PubMed ID: 36586200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine.
    Myers JH; Gunthorpe L; Allinson G; Duda S
    Mar Pollut Bull; 2006 Sep; 52(9):1048-55. PubMed ID: 16540127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risks of using antifouling biocides in aquaculture.
    Guardiola FA; Cuesta A; Meseguer J; Esteban MA
    Int J Mol Sci; 2012; 13(2):1541-1560. PubMed ID: 22408407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina.
    Lavtizar V; Kimura D; Asaoka S; Okamura H
    Ecotoxicol Environ Saf; 2018 Jan; 147():132-138. PubMed ID: 28841528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.