BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27919681)

  • 21. Production and partial purification of tannase from Aspergillus ficuum Gim 3.6.
    Ma WL; Zhao FF; Ye Q; Hu ZX; Yan D; Hou J; Yang Y
    Prep Biochem Biotechnol; 2015; 45(8):754-68. PubMed ID: 25126886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris.
    Koseki T; Miwa Y; Akao T; Akita O; Hashizume K
    J Biotechnol; 2006 Feb; 121(3):381-9. PubMed ID: 16129506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin.
    Nayak SK; Rathore D; Batra JK
    Biochemistry; 1999 Aug; 38(31):10052-8. PubMed ID: 10433712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299.
    Chhokar V; Sangwan M; Beniwal V; Nehra K; Nehra KS
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2256-64. PubMed ID: 19844665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of fungal tannase from Aspergillus niger.
    Dong L; McKinstry WJ; Pan L; Newman J; Ren B
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):267-277. PubMed ID: 33559614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus foetidus.
    Mukherjee G; Banerjee R
    J Basic Microbiol; 2004; 44(1):42-8. PubMed ID: 14768027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations.
    Renovato J; Gutiérrez-Sánchez G; Rodríguez-Durán LV; Bergman C; Rodríguez R; Aguilar CN
    Appl Biochem Biotechnol; 2011 Sep; 165(1):382-95. PubMed ID: 21503777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide and amino acid variations of tannase gene from different Aspergillus strains.
    Borrego-Terrazas JA; Lara-Victoriano F; Flores-Gallegos AC; Veana F; Aguilar CN; Rodríguez-Herrera R
    Can J Microbiol; 2014 Aug; 60(8):509-16. PubMed ID: 25065666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase.
    Gasparetti C; Faccio G; Arvas M; Buchert J; Saloheimo M; Kruus K
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):213-26. PubMed ID: 19798497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermostable Tannase from
    Shao Y; Zhang YH; Zhang F; Yang QM; Weng HF; Xiao Q; Xiao AF
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32093395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel tannase from the xerophilic fungus Aspergillus niger GH1.
    Mata-Gomez M; Rodriguez LV; Ramos EL; Renovato J; Cruz-Hernandez MA; Rodriguez R; Contreras J; Aguilar CN
    J Microbiol Biotechnol; 2009 Sep; 19(9):987-96. PubMed ID: 19809257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for differences in substrate selectivity in Kex2 and furin protein convertases.
    Holyoak T; Kettner CA; Petsko GA; Fuller RS; Ringe D
    Biochemistry; 2004 Mar; 43(9):2412-21. PubMed ID: 14992578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93.
    Salihi A; Asoodeh A; Aliabadian M
    Int J Biol Macromol; 2017 Jan; 94(Pt B):827-835. PubMed ID: 27293035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure and substrate recognition mechanism of Aspergillus oryzae isoprimeverose-producing enzyme.
    Matsuzawa T; Watanabe M; Nakamichi Y; Fujimoto Z; Yaoi K
    J Struct Biol; 2019 Jan; 205(1):84-90. PubMed ID: 30445155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence Engineering of an Aspergillus niger Tannase to Produce in Pichia pastoris a Single-Chain Enzyme with High Specific Activity.
    Ordaz-Pérez D; Fuentes-Garibay JA; Guerrero-Olazarán M; Viader-Salvadó JM
    Mol Biotechnol; 2022 Apr; 64(4):388-400. PubMed ID: 34655039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter.
    Ichikawa K; Shiono Y; Shintani T; Watanabe A; Kanzaki H; Gomi K; Koseki T
    J Biosci Bioeng; 2020 Feb; 129(2):150-154. PubMed ID: 31492608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family.
    Hermoso JA; Sanz-Aparicio J; Molina R; Juge N; González R; Faulds CB
    J Mol Biol; 2004 Apr; 338(3):495-506. PubMed ID: 15081808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The crystal structure of acidic β-galactosidase from Aspergillus oryzae.
    Maksimainen MM; Lampio A; Mertanen M; Turunen O; Rouvinen J
    Int J Biol Macromol; 2013 Sep; 60():109-15. PubMed ID: 23688418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.
    Matoba Y; Tanaka N; Noda M; Higashikawa F; Kumagai T; Sugiyama M
    Proteins; 2013 Nov; 81(11):2052-8. PubMed ID: 23836494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.