These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27919733)

  • 1. Variable neighborhood search for reverse engineering of gene regulatory networks.
    Nicholson C; Goodwin L; Clark C
    J Biomed Inform; 2017 Jan; 65():120-131. PubMed ID: 27919733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and experimental approaches for modeling gene regulatory networks.
    Goutsias J; Lee NH
    Curr Pharm Des; 2007; 13(14):1415-36. PubMed ID: 17504165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving gene regulatory network inference using network topology information.
    Nair A; Chetty M; Wangikar PP
    Mol Biosyst; 2015 Sep; 11(9):2449-63. PubMed ID: 26126758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3off2: A network reconstruction algorithm based on 2-point and 3-point information statistics.
    Affeldt S; Verny L; Isambert H
    BMC Bioinformatics; 2016 Jan; 17 Suppl 2(Suppl 2):12. PubMed ID: 26823190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing transcriptional regulatory networks using three-way mutual information and Bayesian networks.
    Luo W; Woolf PJ
    Methods Mol Biol; 2010; 674():401-18. PubMed ID: 20827604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining gene expression data and prior knowledge for inferring gene regulatory networks via Bayesian networks using structural restrictions.
    de Campos LM; Cano A; Castellano JG; Moral S
    Stat Appl Genet Mol Biol; 2019 May; 18(3):. PubMed ID: 31042646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding optimal models for small gene networks.
    Ott S; Imoto S; Miyano S
    Pac Symp Biocomput; 2004; ():557-67. PubMed ID: 14992533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining regulatory networks through phylogenetic transfer of information.
    Zhang X; Moret BM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1032-45. PubMed ID: 22547434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Approaches to Study Gene Regulatory Networks.
    Omranian N; Nikoloski Z
    Methods Mol Biol; 2017; 1629():283-295. PubMed ID: 28623592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricted-derestricted dynamic Bayesian Network inference of transcriptional regulatory relationships among genes in cancer.
    Adabor ES; Acquaah-Mensah GK
    Comput Biol Chem; 2019 Apr; 79():155-164. PubMed ID: 30822674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems.
    Watanabe Y; Seno S; Takenaka Y; Matsuda H
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S12. PubMed ID: 22369509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking of dynamic Bayesian networks inferred from stochastic time-series data.
    David LA; Wiggins CH
    Ann N Y Acad Sci; 2007 Dec; 1115():90-101. PubMed ID: 17925346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An empirical Bayesian method for estimating biological networks from temporal microarray data.
    Rau A; Jaffrézic F; Foulley JL; Doerge RW
    Stat Appl Genet Mol Biol; 2010; 9():Article 9. PubMed ID: 20196759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.