These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27920166)

  • 1. Revealing the heterogeneous contamination process in metal nanoparticulate catalysts in CO gas without purification by in situ environmental transmission electron microscopy.
    Uchiyama T; Yoshida H; Kamiuchi N; Kohno H; Takeda S
    Microscopy (Oxf); 2016 Dec; 65(6):522-526. PubMed ID: 27920166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.
    Takeda S; Yoshida H
    Microscopy (Oxf); 2013 Feb; 62(1):193-203. PubMed ID: 23325929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions.
    Yoshida H; Kuwauchi Y; Jinschek JR; Sun K; Tanaka S; Kohyama M; Shimada S; Haruta M; Takeda S
    Science; 2012 Jan; 335(6066):317-9. PubMed ID: 22267808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO Gas Induced Phase Separation in PtPb@Pt Catalyst and Formation of Ultrathin Pb Nanosheets Probed by In Situ Transmission Electron Microscopy.
    Wang Q; Zhao ZL; Gu M
    Small; 2019 Oct; 15(42):e1903122. PubMed ID: 31441227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles for heterogeneous catalysis: new mechanistic insights.
    Schauermann S; Nilius N; Shaikhutdinov S; Freund HJ
    Acc Chem Res; 2013 Aug; 46(8):1673-81. PubMed ID: 23252628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature.
    Baier S; Damsgaard CD; Scholz M; Benzi F; Rochet A; Hoppe R; Scherer T; Shi J; Wittstock A; Weinhausen B; Wagner JB; Schroer CG; Grunwaldt JD
    Microsc Microanal; 2016 Feb; 22(1):178-88. PubMed ID: 26914998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct imaging Au nanoparticle migration inside mesoporous silica channels.
    Liu Z; Che R; Elzatahry AA; Zhao D
    ACS Nano; 2014 Oct; 8(10):10455-60. PubMed ID: 25264601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Real-time Environmental High Resolution Electron Microscopy of Nanometer Size Novel Xerogel Catalysts for Hydrogenation Reactions in Nylon 6,6.
    Gai PL; Kourtakis K; Ziemecki S
    Microsc Microanal; 2000 Jul; 6(4):335-342. PubMed ID: 10898817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the capability of in-situ exposure in an environmental scanning electron microscope for investigating the atmospheric corrosion of magnesium.
    Esmaily M; Mortazavi N; Shahabi-Navid M; Svensson JE; Johansson LG; Halvarsson M
    Ultramicroscopy; 2015 Jun; 153():45-54. PubMed ID: 25731810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-Scale Insights into the Oxidation of Aluminum.
    Nguyen L; Hashimoto T; Zakharov DN; Stach EA; Rooney AP; Berkels B; Thompson GE; Haigh SJ; Burnett TL
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2230-2235. PubMed ID: 29319290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope.
    Colby R; Alsem DH; Liyu A; Kabius B
    Ultramicroscopy; 2015 Jun; 153():55-60. PubMed ID: 25765435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.
    Miller BK; Crozier PA
    Microsc Microanal; 2014 Jun; 20(3):815-24. PubMed ID: 24815065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles.
    Luo J; Ersen O; Chu W; Dintzer T; Petit P; Petit C
    J Colloid Interface Sci; 2016 Nov; 482():135-141. PubMed ID: 27501036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.
    Tao FF; Crozier PA
    Chem Rev; 2016 Mar; 116(6):3487-539. PubMed ID: 26955850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.