These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27920526)
1. In vitro inflammatory effects of hard metal (WC-Co) nanoparticle exposure. Armstead AL; Li B Int J Nanomedicine; 2016; 11():6195-6206. PubMed ID: 27920526 [TBL] [Abstract][Full Text] [Related]
2. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Armstead AL; Arena CB; Li B Toxicol Appl Pharmacol; 2014 Jul; 278(1):1-8. PubMed ID: 24746988 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Bastian S; Busch W; Kühnel D; Springer A; Meissner T; Holke R; Scholz S; Iwe M; Pompe W; Gelinsky M; Potthoff A; Richter V; Ikonomidou C; Schirmer K Environ Health Perspect; 2009 Apr; 117(4):530-6. PubMed ID: 19440490 [TBL] [Abstract][Full Text] [Related]
4. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. Armstead AL; Minarchick VC; Porter DW; Nurkiewicz TR; Li B PLoS One; 2015; 10(3):e0118778. PubMed ID: 25738830 [TBL] [Abstract][Full Text] [Related]
5. Lung toxicity of hard metal particles and production of interleukin-1, tumor necrosis factor-alpha, fibronectin, and cystatin-c by lung phagocytes. Huaux F; Lasfargues G; Lauwerys R; Lison D Toxicol Appl Pharmacol; 1995 May; 132(1):53-62. PubMed ID: 7747285 [TBL] [Abstract][Full Text] [Related]
6. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373 [TBL] [Abstract][Full Text] [Related]
7. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Armstead AL; Li B Int J Nanomedicine; 2016; 11():6421-6433. PubMed ID: 27942214 [TBL] [Abstract][Full Text] [Related]
8. Study of the mechanism responsible for the elective toxicity of tungsten carbide-cobalt powder toward macrophages. Lison D; Lauwerys R Toxicol Lett; 1992 Apr; 60(2):203-10. PubMed ID: 1570634 [TBL] [Abstract][Full Text] [Related]
9. Cobalt bioavailability from hard metal particles. Further evidence that cobalt alone is not responsible for the toxicity of hard metal particles. Lison D; Lauwerys R Arch Toxicol; 1994; 68(8):528-31. PubMed ID: 7802596 [TBL] [Abstract][Full Text] [Related]
10. Changes in F-actin organization induced by hard metal particle exposure in rat pulmonary epithelial cells using laser scanning confocal microscopy. Antonini JM; Starks K; Roberts JR; Millecchia L; Yang HM; Rao KM In Vitr Mol Toxicol; 2000; 13(1):5-16. PubMed ID: 10900403 [TBL] [Abstract][Full Text] [Related]
11. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. Van Goethem F; Lison D; Kirsch-Volders M Mutat Res; 1997 Aug; 392(1-2):31-43. PubMed ID: 9269329 [TBL] [Abstract][Full Text] [Related]
13. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro. Kühnel D; Scheffler K; Wellner P; Meißner T; Potthoff A; Busch W; Springer A; Schirmer K J Hazard Mater; 2012 Aug; 227-228():418-26. PubMed ID: 22698683 [TBL] [Abstract][Full Text] [Related]
14. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Ding M; Kisin ER; Zhao J; Bowman L; Lu Y; Jiang B; Leonard S; Vallyathan V; Castranova V; Murray AR; Fadeel B; Shvedova AA Toxicol Appl Pharmacol; 2009 Dec; 241(3):260-8. PubMed ID: 19747498 [TBL] [Abstract][Full Text] [Related]
15. In vitro toxicity of cobalt and hard metal dust in rat and human type II pneumocytes. Roesems G; Hoet PH; Demedts M; Nemery B Pharmacol Toxicol; 1997 Aug; 81(2):74-80. PubMed ID: 9298503 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of the acute lung toxicity of pure cobalt powder and cobalt-tungsten carbide mixture in rat. Lasfargues G; Lison D; Maldague P; Lauwerys R Toxicol Appl Pharmacol; 1992 Jan; 112(1):41-50. PubMed ID: 1733047 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Lison D; Carbonnelle P; Mollo L; Lauwerys R; Fubini B Chem Res Toxicol; 1995 Jun; 8(4):600-6. PubMed ID: 7548741 [TBL] [Abstract][Full Text] [Related]
18. The delayed lung responses to single and repeated intratracheal administration of pure cobalt and hard metal powder in the rat. Lasfargues G; Lardot C; Delos M; Lauwerys R; Lison D Environ Res; 1995 May; 69(2):108-21. PubMed ID: 8608770 [TBL] [Abstract][Full Text] [Related]
19. In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. Anard D; Kirsch-Volders M; Elhajouji A; Belpaeme K; Lison D Carcinogenesis; 1997 Jan; 18(1):177-84. PubMed ID: 9054604 [TBL] [Abstract][Full Text] [Related]
20. Assessing the translocation of silver nanoparticles using an in vitro co-culture model of human airway barrier. Zhang F; Aquino GV; Dabi A; Bruce ED Toxicol In Vitro; 2019 Apr; 56():1-9. PubMed ID: 30594524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]