BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27920665)

  • 1. Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays.
    Gong W; Senčar J; Bakkum DJ; Jäckel D; Obien ME; Radivojevic M; Hierlemann AR
    Front Neurosci; 2016; 10():537. PubMed ID: 27920665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term, High-Spatiotemporal Resolution Recording From Cultured Organotypic Slices with High-Density Microelectrode Arrays.
    Gong W; Sencar J; Jäckel D; Müller J; Fiscella M; Radivojevic M; Bakkum D; Hierlemann A
    Int Solid State Sens Actuators Microsyst Conf; 2015 Jun; 18():1037-1040. PubMed ID: 33868793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic spike sorting for high-density microelectrode arrays.
    Diggelmann R; Fiscella M; Hierlemann A; Franke F
    J Neurophysiol; 2018 Dec; 120(6):3155-3171. PubMed ID: 30207864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate signal-source localization in brain slices by means of high-density microelectrode arrays.
    Obien MEJ; Hierlemann A; Frey U
    Sci Rep; 2019 Jan; 9(1):788. PubMed ID: 30692552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs).
    Ness TV; Chintaluri C; Potworowski J; Łęski S; Głąbska H; Wójcik DK; Einevoll GT
    Neuroinformatics; 2015 Oct; 13(4):403-26. PubMed ID: 25822810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures.
    Kristensen BW; Noraberg J; Thiébaud P; Koudelka-Hep M; Zimmer J
    Brain Res; 2001 Mar; 896(1-2):1-17. PubMed ID: 11277967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays.
    Egert U; Schlosshauer B; Fennrich S; Nisch W; Fejtl M; Knott T; Müller T; Hämmerle H
    Brain Res Brain Res Protoc; 1998 Jun; 2(4):229-42. PubMed ID: 9630647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional monitoring of spiking networks in acute brain slices.
    Egert U; Heck D; Aertsen A
    Exp Brain Res; 2002 Jan; 142(2):268-74. PubMed ID: 11807580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional imaging of brain organoids using high-density microelectrode arrays.
    Schröter M; Wang C; Terrigno M; Hornauer P; Huang Z; Jagasia R; Hierlemann A
    MRS Bull; 2022; 47(6):530-544. PubMed ID: 36120104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Cerebrospinal Fluid Induces Neuronal Excitability Changes in Resected Human Neocortical and Hippocampal Brain Slices.
    Wickham J; Corna A; Schwarz N; Uysal B; Layer N; Honegger JB; Wuttke TV; Koch H; Zeck G
    Front Neurosci; 2020; 14():283. PubMed ID: 32372899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal characterization of causal electrophysiological activity stimulated by single pulse focused ultrasound: an
    Suarez-Castellanos IM; Dossi E; Vion-Bailly J; Salette L; Chapelon JY; Carpentier A; Huberfeld G; N'Djin WA
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33494078
    [No Abstract]   [Full Text] [Related]  

  • 13. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable microelectrode arrays--a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics.
    Yu Z; Tsay C; Lacour SP; Wagner S; Morrison B
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6732-5. PubMed ID: 17959498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvements for recording retinal function with Microelectrode Arrays.
    Rathbun DL; Jalligampala A; Zrenner E; Hosseinzadeh Z
    MethodsX; 2024 Jun; 12():102543. PubMed ID: 38313698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing seizure liability using multi-electrode arrays (MEA).
    Fan J; Thalody G; Kwagh J; Burnett E; Shi H; Lewen G; Chen SJ; Levesque P
    Toxicol In Vitro; 2019 Mar; 55():93-100. PubMed ID: 30528373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfused drop microfluidic device for brain slice culture-based drug discovery.
    Liu J; Pan L; Cheng X; Berdichevsky Y
    Biomed Microdevices; 2016 Jun; 18(3):46. PubMed ID: 27194028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute hippocampal slice preparation and hippocampal slice cultures.
    Lein PJ; Barnhart CD; Pessah IN
    Methods Mol Biol; 2011; 758():115-34. PubMed ID: 21815062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culturing thick brain slices: an interstitial 3D microperfusion system for enhanced viability.
    Rambani K; Vukasinovic J; Glezer A; Potter SM
    J Neurosci Methods; 2009 Jun; 180(2):243-54. PubMed ID: 19443039
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.