These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27920665)

  • 21. High-Density Mapping of Brain Slices using a Large Multi-Functional High-Density CMOS Microelectrode Array System.
    Viswam V; Bounik R; Shadmani A; Dragas J; Obien M; Müller J; Chen Y; Hierlemann A
    Int Solid State Sens Actuators Microsyst Conf; 2017 Jun; 2017():135-138. PubMed ID: 28868212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Domoic acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice cultures.
    Hiolski EM; Ito S; Beggs JM; Lefebvre KA; Litke AM; Smith DR
    Neurotoxicology; 2016 Sep; 56():215-224. PubMed ID: 27506300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics and multielectrode array-compatible organotypic slice culture method.
    Berdichevsky Y; Sabolek H; Levine JB; Staley KJ; Yarmush ML
    J Neurosci Methods; 2009 Mar; 178(1):59-64. PubMed ID: 19100768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays.
    Panuccio G; Colombi I; Chiappalone M
    J Vis Exp; 2018 May; (135):. PubMed ID: 29863681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Cell Electrical Stimulation Using CMOS-Based High-Density Microelectrode Arrays.
    Ronchi S; Fiscella M; Marchetti C; Viswam V; Müller J; Frey U; Hierlemann A
    Front Neurosci; 2019; 13():208. PubMed ID: 30918481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-electrode array recordings of neuronal avalanches in organotypic cultures.
    Plenz D; Stewart CV; Shew W; Yang H; Klaus A; Bellay T
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21841767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro.
    Killian NJ; Vernekar VN; Potter SM; Vukasinovic J
    Front Neurosci; 2016; 10():135. PubMed ID: 27065793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays.
    Ferrea E; Maccione A; Medrihan L; Nieus T; Ghezzi D; Baldelli P; Benfenati F; Berdondini L
    Front Neural Circuits; 2012; 6():80. PubMed ID: 23162432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.
    Adamchik Y; Frantseva MV; Weisspapir M; Carlen PL; Perez Velazquez JL
    Brain Res Brain Res Protoc; 2000 Apr; 5(2):153-8. PubMed ID: 10775835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new method allowing long-term potentiation recordings in hippocampal organotypic slices.
    Paci P; Gabriele S; Ris L
    Brain Behav; 2017 May; 7(5):e00692. PubMed ID: 28523233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
    Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A
    J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Fabrication of a Three-Dimensional Multi-Electrode Array for Neuron Electrophysiology.
    Zuo L; Yu S; Briggs CA; Kantor S; Pan JY
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28975276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration.
    Hofmann F; Bading H
    J Physiol Paris; 2006; 99(2-3):125-32. PubMed ID: 16442786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variability of seizure-like activity in an
    Ghiasvand S; Dussourd CR; Liu J; Song Y; Berdichevsky Y
    Heliyon; 2020 Nov; 6(11):e05587. PubMed ID: 33299935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.
    Choi G; Lee J; Kim H; Jang J; Im C; Jeon N; Jung W
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 29215208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays.
    Geissler M; Faissner A
    J Neurosci Methods; 2012 Mar; 204(2):262-72. PubMed ID: 22182586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the in vitro propagation of epileptiform electrophysiological activity in organotypic hippocampal slice cultures coupled to 3D microelectrode arrays.
    Pisciotta M; Morgavi G; Jahnsen H
    Brain Res; 2010 Oct; 1358():46-53. PubMed ID: 20713026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.