These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27920741)

  • 41. Can a Theater Acting Intervention Enhance Inhibitory Control in Older Adults? A Brain-Behavior Investigation.
    Rajesh A; Noice T; Noice H; Jahn A; Daugherty AM; Heller W; Kramer AF
    Front Hum Neurosci; 2021; 15():583220. PubMed ID: 33815076
    [No Abstract]   [Full Text] [Related]  

  • 42. Task context load induces reactive cognitive control: An fMRI study on cortical and brain stem activity.
    Mäki-Marttunen V; Hagen T; Espeseth T
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):945-965. PubMed ID: 30659515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How performance (non-)contingent reward modulates cognitive control.
    Fröber K; Dreisbach G
    Acta Psychol (Amst); 2016 Jul; 168():65-77. PubMed ID: 27160060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward a formal theory of proactivity.
    Lieder F; Iwama G
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):490-508. PubMed ID: 33721229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Dual Mechanisms of Cognitive Control Project.
    Braver TS; Kizhner A; Tang R; Freund MC; Etzel JA
    J Cogn Neurosci; 2021 Aug; ():1-26. PubMed ID: 34407191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulating effect of COMT genotype on the brain regions underlying proactive control process during inhibition.
    Jaspar M; Genon S; Muto V; Meyer C; Manard M; Dideberg V; Bours V; Salmon E; Maquet P; Collette F
    Cortex; 2014 Jan; 50():148-61. PubMed ID: 23859480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Training on Working Memory and Inhibitory Control in Young Adults.
    Maraver MJ; Bajo MT; Gomez-Ariza CJ
    Front Hum Neurosci; 2016; 10():588. PubMed ID: 27917117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The neural bases of proactive and reactive control processes in normal aging.
    Manard M; François S; Phillips C; Salmon E; Collette F
    Behav Brain Res; 2017 Mar; 320():504-516. PubMed ID: 27784627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental Changes in the Association Between Cognitive Control and Anxiety.
    Filippi CA; Subar A; Ravi S; Haas S; Troller-Renfree SV; Fox NA; Leibenluft E; Pine DS
    Child Psychiatry Hum Dev; 2022 Jun; 53(3):599-609. PubMed ID: 33738691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proactive control and episodic binding in context processing effects.
    van Wouwe NC; Band GP; Ridderinkhof KR
    Acta Psychol (Amst); 2009 Jul; 131(3):245-53. PubMed ID: 19541281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of language proficiency on proactive occulo-motor control among bilinguals.
    Singh JP; Kar BR
    PLoS One; 2018; 13(12):e0207904. PubMed ID: 30540761
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced cognitive control over task-irrelevant emotional distractors in generalized anxiety disorder versus obsessive-compulsive disorder.
    Hallion LS; Tolin DF; Diefenbach GJ
    J Anxiety Disord; 2019 May; 64():71-78. PubMed ID: 31048095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Role of the Frontal and Parietal Cortex in Proactive and Reactive Inhibitory Control: A Transcranial Direct Current Stimulation Study.
    Cai Y; Li S; Liu J; Li D; Feng Z; Wang Q; Chen C; Xue G
    J Cogn Neurosci; 2016 Jan; 28(1):177-86. PubMed ID: 26439269
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The neural circuitry supporting goal maintenance during cognitive control: a comparison of expectancy AX-CPT and dot probe expectancy paradigms.
    Lopez-Garcia P; Lesh TA; Salo T; Barch DM; MacDonald AW; Gold JM; Ragland JD; Strauss M; Silverstein SM; Carter CS
    Cogn Affect Behav Neurosci; 2016 Feb; 16(1):164-75. PubMed ID: 26494483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus.
    Marklund P; Persson J
    Neuroimage; 2012 Nov; 63(3):1552-60. PubMed ID: 22906785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive and proactive control mechanisms of response inhibition in gambling disorder.
    Sharif-Razi M; Hodgins DC; Goghari VM
    Psychiatry Res; 2019 Feb; 272():114-121. PubMed ID: 30580134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Task conflict and proactive control: A computational theory of the Stroop task.
    Kalanthroff E; Davelaar EJ; Henik A; Goldfarb L; Usher M
    Psychol Rev; 2018 Jan; 125(1):59-82. PubMed ID: 29035077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Role of Psychometrics in Individual Differences Research in Cognition: A Case Study of the AX-CPT.
    Cooper SR; Gonthier C; Barch DM; Braver TS
    Front Psychol; 2017; 8():1482. PubMed ID: 28928690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of monetary incentives on context processing in younger and older adults: an event-related potential study.
    Schmitt H; Ferdinand NK; Kray J
    Cogn Affect Behav Neurosci; 2015 Jun; 15(2):416-34. PubMed ID: 25665666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparison of methods used for inducing mental fatigue in performance research: individualised, dual-task and short duration cognitive tests are most effective.
    O'Keeffe K; Hodder S; Lloyd A
    Ergonomics; 2020 Jan; 63(1):1-12. PubMed ID: 31680632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.