BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27921285)

  • 1. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors.
    Soltani M; Sefidgar M; Bazmara H; Casey ME; Subramaniam RM; Wahl RL; Rahmim A
    Ann Nucl Med; 2017 Feb; 31(2):109-124. PubMed ID: 27921285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of FMISO [F
    Asgari H; Soltani M; Sefidgar M
    Microvasc Res; 2018 Jul; 118():20-30. PubMed ID: 29408401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of PET tracer distribution in solid tumors integrating microvasculature.
    Fasaeiyan N; Soltani M; Moradi Kashkooli F; Taatizadeh E; Rahmim A
    BMC Biotechnol; 2021 Nov; 21(1):67. PubMed ID: 34823506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatiotemporal multi-scale computational model for FDG PET imaging at different stages of tumor growth and angiogenesis.
    Kashkooli FM; Abazari MA; Soltani M; Ghazani MA; Rahmim A
    Sci Rep; 2022 Jun; 12(1):10062. PubMed ID: 35710559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis.
    Røe K; Aleksandersen TB; Kristian A; Nilsen LB; Seierstad T; Qu H; Ree AH; Olsen DR; Malinen E
    Acta Oncol; 2010 Oct; 49(7):914-21. PubMed ID: 20831478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal multi-scale modeling of radiopharmaceutical distributions in vascularized solid tumors.
    Kiani Shahvandi M; Soltani M; Moradi Kashkooli F; Saboury B; Rahmim A
    Sci Rep; 2022 Aug; 12(1):14582. PubMed ID: 36028541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
    Moradi Kashkooli F; Soltani M; Rezaeian M; Taatizadeh E; Hamedi MH
    Microvasc Res; 2019 May; 123():111-124. PubMed ID: 30711547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data.
    Kelly CJ; Brady M
    Phys Med Biol; 2006 Nov; 51(22):5859-73. PubMed ID: 17068369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative studies using positron emission tomography (PET) for the diagnosis and therapy planning of oncological patients.
    Dimitrakopoulou-Strauss A; Strauss L
    Hell J Nucl Med; 2006; 9(1):10-21. PubMed ID: 16617388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of gene expression on 18F-FDG kinetics; a new chapter for diagnostic nuclear medicine.
    Strauss LG; Dimitrakopoulou-Strauss A
    Hell J Nucl Med; 2009; 12(1):2-4. PubMed ID: 19330172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression patterns and tumor uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of pancreatic cancer.
    von Forstner C; Egberts JH; Ammerpohl O; Niedzielska D; Buchert R; Mikecz P; Schumacher U; Peldschus K; Adam G; Pilarsky C; Grutzmann R; Kalthoff H; Henze E; Brenner W
    J Nucl Med; 2008 Aug; 49(8):1362-70. PubMed ID: 18632830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial diffusion and the relationship between compartment modelling and multi-scale spatial-temporal modelling of (18)F-FLT tumour uptake dynamics.
    Liu D; Chalkidou A; Landau DB; Marsden PK; Fenwick JD
    Phys Med Biol; 2014 Sep; 59(17):5175-202. PubMed ID: 25138724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myocardial distribution of (18)F-FDG and (99m)Tc-sestamibi on dual-isotope simultaneous acquisition SPET compared with PET.
    Matsunari I; Kanayama S; Yoneyama T; Matsudaira M; Nakajima K; Taki J; Nekolla SG; Takekoshi N; Tonami N; Hisada K
    Eur J Nucl Med Mol Imaging; 2002 Oct; 29(10):1357-64. PubMed ID: 12271419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved simultaneous estimation of tracer kinetic models with artificial immune network based optimization method.
    Liu L; Ding H; Huang HB
    Appl Radiat Isot; 2016 Jan; 107():71-76. PubMed ID: 26433131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-11C-methyl-L-cysteine: a new amino acid PET tracer for cancer imaging.
    Deng H; Tang X; Wang H; Tang G; Wen F; Shi X; Yi C; Wu K; Meng Q
    J Nucl Med; 2011 Feb; 52(2):287-93. PubMed ID: 21233188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction for the effect of rising plasma glucose levels on quantification of MR(glc) with FDG-PET.
    Dunn JT; Anthony K; Amiel SA; Marsden PK
    J Cereb Blood Flow Metab; 2009 May; 29(5):1059-67. PubMed ID: 19293824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.
    Trägårdh M; Møller N; Sørensen M
    J Nucl Med; 2015 Sep; 56(9):1366-71. PubMed ID: 26159590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors.
    Strauss LG; Koczan D; Klippel S; Pan L; Cheng C; Willis S; Haberkorn U; Dimitrakopoulou-Strauss A
    J Nucl Med; 2008 Aug; 49(8):1238-44. PubMed ID: 18632818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.