BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 27921378)

  • 1. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO
    Roldán L; Marco Y; García-Bordejé E
    ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Performance of Ru/γ-Al2O3 Catalysts in the Selective Methanation of CO in CO2-Rich Reformate Gases upon Transient Exposure to Water-Containing Reaction Gas.
    Abdel-Mageed AM; Widmann D; Eckle S; Behm RJ
    ChemSusChem; 2015 Nov; 8(22):3869-81. PubMed ID: 26457475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts.
    Oubenali M; Vanucci G; Machado B; Kacimi M; Ziyad M; Faria J; Raspolli-Galetti A; Serp P
    ChemSusChem; 2011 Jul; 4(7):950-6. PubMed ID: 21656695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NiFe and CoFe nanocatalysts supported on highly dispersed alumina-silica: Structure, surface properties, and performance in CO
    Dyachenko A; Ischenko O; Pryhunova O; Gaidai S; Diyuk V; Goncharuk O; Mischanchuk O; Bonarowska M; Nikiforow K; Kaszkur Z; Hołdyński M; Lisnyak VV
    Environ Res; 2024 Aug; 255():119203. PubMed ID: 38782347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
    Melo CI; Szczepańska A; Bogel-Łukasik E; Nunes da Ponte M; Branco LC
    ChemSusChem; 2016 May; 9(10):1081-4. PubMed ID: 27114238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO
    Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium on Carbonaceous Materials for the Selective Hydrogenation of HMF.
    Cattaneo S; Naslhajian H; Somodi F; Evangelisti C; Villa A; Prati L
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the nanoscale support on carbon deposition and carbon elimination over Ni/gamma-Al2O3 catalyst for CH4 conversion.
    Yang Y; Xu H; Li W
    J Nanosci Nanotechnol; 2004 Sep; 4(7):891-5. PubMed ID: 15570978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source.
    Jędrzejczyk M; Soszka E; Goscianska J; Kozanecki M; Grams J; Ruppert AM
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNF-Functionalization as Versatile Tool for Tuning Activity in Cellulose-Derived Product Hydrogenation.
    Jouve A; Cattaneo S; Capelli S; Stucchi M; Evangelisti C; Villa A; Prati L
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30654554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored ruthenium-N-heterocyclic carbene hybrid catalytic materials for the hydrogenation of carbon dioxide in the presence of amine.
    Baffert M; Maishal TK; Mathey L; Copéret C; Thieuleux C
    ChemSusChem; 2011 Dec; 4(12):1762-5. PubMed ID: 22105901
    [No Abstract]   [Full Text] [Related]  

  • 17. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.
    Li J; Liu JL; Zhou HJ; Fu Y
    ChemSusChem; 2016 Jun; 9(11):1339-47. PubMed ID: 27144965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.
    Sawant SY; Somani RS; Bajaj HC; Sharma SS
    J Hazard Mater; 2012 Aug; 227-228():317-26. PubMed ID: 22682801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-formylation and N-methylation of amines using metal-free N-heterocyclic carbene catalysts and CO
    Bobbink FD; Das S; Dyson PJ
    Nat Protoc; 2017 Feb; 12(2):417-428. PubMed ID: 28125103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation.
    Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z
    J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.