These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 27921398)
1. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and >Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. Kim YS; Balaraju K; Jeon Y J Zhejiang Univ Sci B; 2016 Dec.; 17(12):931-940. PubMed ID: 27921398 [TBL] [Abstract][Full Text] [Related]
2. Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium. Kim YS; Balaraju K; Jeon Y Plant Pathol J; 2016 Jun; 32(3):251-9. PubMed ID: 27298600 [TBL] [Abstract][Full Text] [Related]
3. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Fan H; Ru J; Zhang Y; Wang Q; Li Y Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713 [TBL] [Abstract][Full Text] [Related]
4. Bioactivities evaluation of an endophytic bacterial strain Bacillus tequilensis QNF2 inhibiting apple ring rot caused by Botryosphaeria dothidea on postharvest apple fruits. Huang Y; Li J; Shan X; Wang H; Duan Y Food Microbiol; 2024 Oct; 123():104590. PubMed ID: 39038895 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Guardado-Valdivia L; Tovar-Pérez E; Chacón-López A; López-García U; Gutiérrez-Martínez P; Stoll A; Aguilera S Microbiol Res; 2018 May; 210():26-32. PubMed ID: 29625655 [TBL] [Abstract][Full Text] [Related]
6. Biocontrol efficiency of Meyerozyma guilliermondii Y-1 against apple postharvest decay caused by Botryosphaeria dothidea and the possible mechanisms of action. Huang Y; Sun C; Guan X; Lian S; Li B; Wang C Int J Food Microbiol; 2021 Jan; 338():108957. PubMed ID: 33221041 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Kim YS; Lee Y; Cheon W; Park J; Kwon HT; Balaraju K; Kim J; Yoon YJ; Jeon Y Sci Rep; 2021 Jan; 11(1):626. PubMed ID: 33436839 [TBL] [Abstract][Full Text] [Related]
8. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants' defence mechanisms against Monilinia fructicola in apple fruits. Czarnecka M; Żarowska B; Połomska X; Restuccia C; Cirvilleri G Food Microbiol; 2019 Oct; 83():1-8. PubMed ID: 31202399 [TBL] [Abstract][Full Text] [Related]
9. Application of Rhizobacteria for Plant Growth Promotion Effect and Biocontrol of Anthracnose Caused by Colletotrichum acutatum on Pepper. Lamsal K; Kim SW; Kim YS; Lee YS Mycobiology; 2012 Dec; 40(4):244-51. PubMed ID: 23323049 [TBL] [Abstract][Full Text] [Related]
10. Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists. Kim HM; Lee KJ; Chae JC J Microbiol Biotechnol; 2015 Nov; 25(11):1954-9. PubMed ID: 26428548 [TBL] [Abstract][Full Text] [Related]
11. Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001. Li Y; Han LR; Zhang Y; Fu X; Chen X; Zhang L; Mei R; Wang Q Plant Pathol J; 2013 Jun; 29(2):168-73. PubMed ID: 25288943 [TBL] [Abstract][Full Text] [Related]
12. Butyl succinate-mediated control of Bacillus velezensis ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides. Hwang SH; Maung CEH; Noh JS; Cho JY; Kim KY J Appl Microbiol; 2023 Nov; 134(11):. PubMed ID: 37903743 [TBL] [Abstract][Full Text] [Related]
13. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Calvo H; Marco P; Blanco D; Oria R; Venturini ME Food Microbiol; 2017 May; 63():101-110. PubMed ID: 28040156 [TBL] [Abstract][Full Text] [Related]
15. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. Weselowski B; Nathoo N; Eastman AW; MacDonald J; Yuan ZC BMC Microbiol; 2016 Oct; 16(1):244. PubMed ID: 27756215 [TBL] [Abstract][Full Text] [Related]
16. Isolation and Characterization of Yuan H; Shi B; Wang L; Huang T; Zhou Z; Hou H; Tu H Front Microbiol; 2021; 12():808938. PubMed ID: 35058916 [No Abstract] [Full Text] [Related]
17. From Glaciers to Refrigerators: the Population Genomics and Biocontrol Potential of the Black Yeast Aureobasidium subglaciale. Zajc J; Černoša A; Sun X; Fang C; Gunde-Cimerman N; Song Z; Gostinčar C Microbiol Spectr; 2022 Aug; 10(4):e0145522. PubMed ID: 35880866 [TBL] [Abstract][Full Text] [Related]
18. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Alijani Z; Amini J; Ashengroph M; Bahramnejad B Int J Food Microbiol; 2019 Oct; 307():108276. PubMed ID: 31408741 [TBL] [Abstract][Full Text] [Related]
19. Multi-genetic Analysis of Zhafarina S; Wibowo A; Widiastuti A Pak J Biol Sci; 2021 Jan; 24(1):53-65. PubMed ID: 33683031 [TBL] [Abstract][Full Text] [Related]
20. Characterization and evaluation of Heo Y; Lee Y; Balaraju K; Jeon Y Front Microbiol; 2023; 14():1322641. PubMed ID: 38260885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]