These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27921404)

  • 1. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants.
    Li WX; Wu SL; Liu YH; Jin GL; Zhao HJ; Fan LJ; Shu QY
    J Zhejiang Univ Sci B; 2016 Dec.; 17(12):992-996. PubMed ID: 27921404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somaclonal variation does not preclude the use of rice transformants for genetic screening.
    Wei FJ; Kuang LY; Oung HM; Cheng SY; Wu HP; Huang LT; Tseng YT; Chiou WY; Hsieh-Feng V; Chung CH; Yu SM; Lee LY; Gelvin SB; Hsing YI
    Plant J; 2016 Mar; 85(5):648-59. PubMed ID: 26833589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation.
    Wu C; Sui Y
    Methods Mol Biol; 2019; 1864():95-103. PubMed ID: 30415331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.
    Gao X; Zhou J; Li J; Zou X; Zhao J; Li Q; Xia R; Yang R; Wang D; Zuo Z; Tu J; Tao Y; Chen X; Xie Q; Zhu Z; Qu S
    Plant Physiol; 2015 Jan; 167(1):11-24. PubMed ID: 25371551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.
    Endo M; Kumagai M; Motoyama R; Sasaki-Yamagata H; Mori-Hosokawa S; Hamada M; Kanamori H; Nagamura Y; Katayose Y; Itoh T; Toki S
    Plant Cell Physiol; 2015 Jan; 56(1):116-25. PubMed ID: 25378689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial transposons are co-transferred with T-DNA to rice chromosomes during Agrobacterium-mediated transformation.
    Kim SR; An G
    Mol Cells; 2012 Jun; 33(6):583-9. PubMed ID: 22570148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system.
    Xu RF; Li H; Qin RY; Li J; Qiu CH; Yang YC; Ma H; Li L; Wei PC; Yang JB
    Sci Rep; 2015 Jun; 5():11491. PubMed ID: 26089199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.
    Wang K; Liu H; Du L; Ye X
    Plant Biotechnol J; 2017 May; 15(5):614-623. PubMed ID: 27862820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).
    Ozawa K
    Methods Mol Biol; 2012; 847():51-7. PubMed ID: 22350998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative whole-genome analyses of selection marker-free rice-based cholera toxin B-subunit vaccine lines and wild-type lines.
    Kashima K; Mejima M; Kurokawa S; Kuroda M; Kiyono H; Yuki Y
    BMC Genomics; 2015 Feb; 16(1):48. PubMed ID: 25653106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.
    Park D; Park SH; Ban YW; Kim YS; Park KC; Kim NS; Kim JK; Choi IY
    BMC Biotechnol; 2017 Aug; 17(1):67. PubMed ID: 28810845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium-Mediated Genetic Transformation, Transgenic Production, and Its Application for the Study of Male Reproductive Development in Rice.
    Xu D; Mondol PC; Uzair M; Tucker MR; Zhang D
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33104071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of Ac/Ds transposon system to genetate marker gene free transgenic plants in rice].
    Jin WZ; Duan RJ; Zhang F; Chen SY; Wu YR; Wu P
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):668-73. PubMed ID: 15971577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multigene Engineering in Rice Using High-Capacity Agrobacterium tumefaciens BIBAC Vectors.
    He R
    Methods Mol Biol; 2016; 1385():29-37. PubMed ID: 26614279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.
    Inagaki S; Henry IM; Lieberman MC; Comai L
    PLoS One; 2015; 10(10):e0139672. PubMed ID: 26445462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice.
    Toki S; Hara N; Ono K; Onodera H; Tagiri A; Oka S; Tanaka H
    Plant J; 2006 Sep; 47(6):969-76. PubMed ID: 16961734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64.
    Sahoo RK; Tuteja N
    GM Crops Food; 2012; 3(2):123-8. PubMed ID: 22538224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium-mediated transformation: rice transformation.
    Slamet-Loedin IH; Chadha-Mohanty P; Torrizo L
    Methods Mol Biol; 2014; 1099():261-71. PubMed ID: 24243210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR RNA-guided integrase enables high-efficiency targeted genome engineering in Agrobacterium tumefaciens.
    Aliu E; Lee K; Wang K
    Plant Biotechnol J; 2022 Oct; 20(10):1916-1927. PubMed ID: 35690588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPR/Cas9 toolkit for multiplex genome editing in plants.
    Xing HL; Dong L; Wang ZP; Zhang HY; Han CY; Liu B; Wang XC; Chen QJ
    BMC Plant Biol; 2014 Nov; 14():327. PubMed ID: 25432517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.