These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 27922000)
1. Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Li KM; Wilkinson C; Kellosalo J; Tsai JY; Kajander T; Jeuken LJ; Sun YJ; Goldman A Nat Commun; 2016 Dec; 7():13596. PubMed ID: 27922000 [TBL] [Abstract][Full Text] [Related]
2. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Kellosalo J; Kajander T; Kogan K; Pokharel K; Goldman A Science; 2012 Jul; 337(6093):473-6. PubMed ID: 22837527 [TBL] [Abstract][Full Text] [Related]
3. Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Tsai JY; Kellosalo J; Sun YJ; Goldman A Curr Opin Struct Biol; 2014 Aug; 27():38-47. PubMed ID: 24768824 [TBL] [Abstract][Full Text] [Related]
4. Inorganic pyrophosphatases: one substrate, three mechanisms. Kajander T; Kellosalo J; Goldman A FEBS Lett; 2013 Jun; 587(13):1863-9. PubMed ID: 23684653 [TBL] [Abstract][Full Text] [Related]
5. Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. Tsai JY; Tang KZ; Li KM; Hsu BL; Chiang YW; Goldman A; Sun YJ J Mol Biol; 2019 Apr; 431(8):1619-1632. PubMed ID: 30878480 [TBL] [Abstract][Full Text] [Related]
6. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases. Strauss J; Wilkinson C; Vidilaseris K; de Castro Ribeiro OM; Liu J; Hillier J; Wichert M; Malinen AM; Gehl B; Jeuken LJ; Pearson AR; Goldman A EMBO Rep; 2024 Feb; 25(2):853-875. PubMed ID: 38182815 [TBL] [Abstract][Full Text] [Related]
7. Asymmetry in catalysis by Vidilaseris K; Kiriazis A; Turku A; Khattab A; Johansson NG; Leino TO; Kiuru PS; Boije Af Gennäs G; Meri S; Yli-Kauhaluoma J; Xhaard H; Goldman A Sci Adv; 2019 May; 5(5):eaav7574. PubMed ID: 31131322 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709 [TBL] [Abstract][Full Text] [Related]
9. Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. McIntosh MT; Vaidya AB Int J Parasitol; 2002 Jan; 32(1):1-14. PubMed ID: 11796117 [TBL] [Abstract][Full Text] [Related]
10. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases. Kellosalo J; Kajander T; Honkanen R; Goldman A Mol Membr Biol; 2013 Feb; 30(1):64-74. PubMed ID: 22881431 [TBL] [Abstract][Full Text] [Related]
11. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+. Luoto HH; Baykov AA; Lahti R; Malinen AM Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210 [TBL] [Abstract][Full Text] [Related]
12. Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation. Shah NR; Wilkinson C; Harborne SP; Turku A; Li KM; Sun YJ; Harris S; Goldman A Struct Dyn; 2017 May; 4(3):032105. PubMed ID: 28345008 [TBL] [Abstract][Full Text] [Related]
13. mPPases create a conserved anionic membrane fingerprint as identified via multi-scale simulations. Holmes AOM; Goldman A; Kalli AC PLoS Comput Biol; 2022 Oct; 18(10):e1010578. PubMed ID: 36191052 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression and purification of membrane-bound pyrophosphatases. Kellosalo J; Kajander T; Palmgren MG; Lopéz-Marqués RL; Goldman A Protein Expr Purif; 2011 Sep; 79(1):25-34. PubMed ID: 21664973 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima. Awwad K; Desai A; Smith C; Sommerhalter M Acta Crystallogr D Biol Crystallogr; 2013 Feb; 69(Pt 2):184-93. PubMed ID: 23385455 [TBL] [Abstract][Full Text] [Related]
16. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H Huang LK; Huang YC; Chen PC; Lee CH; Lin SM; Hsu YH; Pan RL J Membr Biol; 2023 Dec; 256(4-6):443-458. PubMed ID: 37955797 [TBL] [Abstract][Full Text] [Related]
17. A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Pérez-Castiñeira JR; López-Marqués RL; Losada M; Serrano A FEBS Lett; 2001 May; 496(1):6-11. PubMed ID: 11343697 [TBL] [Abstract][Full Text] [Related]
18. Na+-pyrophosphatase: a novel primary sodium pump. Malinen AM; Belogurov GA; Baykov AA; Lahti R Biochemistry; 2007 Jul; 46(30):8872-8. PubMed ID: 17605473 [TBL] [Abstract][Full Text] [Related]
19. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET. Harborne SPD; Strauss J; Turku A; Watson MA; Tuma R; Harris SA; Goldman A Methods Enzymol; 2018; 607():93-130. PubMed ID: 30149870 [TBL] [Abstract][Full Text] [Related]
20. Pre-steady-state kinetics and solvent isotope effects support the "billiard-type" transport mechanism in Na Malinen AM; Anashkin VA; Orlov VN; Bogachev AV; Lahti R; Baykov AA Protein Sci; 2022 Sep; 31(9):e4394. PubMed ID: 36040263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]