These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 27922000)
41. Oxygen exchange reactions catalyzed by vacuolar H(+)-translocating pyrophosphatase. Evidence for reversible formation of enzyme-bound pyrophosphate. Baykov AA; Kasho VN; Bakuleva NP; Rea PA FEBS Lett; 1994 Aug; 350(2-3):323-7. PubMed ID: 8070586 [TBL] [Abstract][Full Text] [Related]
42. How metal cofactors drive dimer-dodecamer transition of the M42 aminopeptidase TmPep1050 of Dutoit R; Van Gompel T; Brandt N; Van Elder D; Van Dyck J; Sobott F; Droogmans L J Biol Chem; 2019 Nov; 294(47):17777-17789. PubMed ID: 31611236 [TBL] [Abstract][Full Text] [Related]
43. Structural basis for the reversibility of proton pyrophosphatase. Regmi KC; Pizzio GA; Gaxiola RA Plant Signal Behav; 2016 Oct; 11(10):e1231294. PubMed ID: 27611445 [TBL] [Abstract][Full Text] [Related]
44. Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7. Singh MK; Manoj N Proteins; 2017 Apr; 85(4):694-708. PubMed ID: 28097692 [TBL] [Abstract][Full Text] [Related]
45. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. Zhen RG; Kim EJ; Rea PA J Biol Chem; 1997 Aug; 272(35):22340-8. PubMed ID: 9268385 [TBL] [Abstract][Full Text] [Related]
46. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications. Tuominen V; Heikinheimo P; Kajander T; Torkkel T; Hyytiä T; Käpylä J; Lahti R; Cooperman BS; Goldman A J Mol Biol; 1998 Dec; 284(5):1565-80. PubMed ID: 9878371 [TBL] [Abstract][Full Text] [Related]
47. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K Strauss J; Wilkinson C; Vidilaseris K; Harborne SPD; Goldman A Methods Enzymol; 2018; 607():131-156. PubMed ID: 30149856 [TBL] [Abstract][Full Text] [Related]
48. Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritima: a "Hot-Solve" method for isolation of recombinant thermophilic membrane proteins. López-Marqués RL; Pérez-Castiñeira JR; Buch-Pedersen MJ; Marco S; Rigaud JL; Palmgren MG; Serrano A Biochim Biophys Acta; 2005 Oct; 1716(1):69-76. PubMed ID: 16182234 [TBL] [Abstract][Full Text] [Related]
49. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755 [TBL] [Abstract][Full Text] [Related]
50. M42 aminopeptidase catalytic site: the structural and functional role of a strictly conserved aspartate residue. Dutoit R; Brandt N; Van Gompel T; Van Elder D; Van Dyck J; Sobott F; Droogmans L Proteins; 2020 Dec; 88(12):1639-1647. PubMed ID: 32673419 [TBL] [Abstract][Full Text] [Related]
51. Thermotoga maritima MazG protein has both nucleoside triphosphate pyrophosphohydrolase and pyrophosphatase activities. Zhang J; Zhang Y; Inouye M J Biol Chem; 2003 Jun; 278(24):21408-14. PubMed ID: 12657645 [TBL] [Abstract][Full Text] [Related]
52. Screening for Thermotoga maritima Membrane-Bound Pyrophosphatase Inhibitors. Vidilaseris K; Johansson NG; Turku A; Kiriazis A; Boije Af Gennäs G; Yli-Kauhaluoma J; Xhaard H; Goldman A J Vis Exp; 2019 Nov; (153):. PubMed ID: 31814619 [TBL] [Abstract][Full Text] [Related]
53. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning. Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753 [TBL] [Abstract][Full Text] [Related]
54. Crystal structure of Thermotoga maritima acetyl esterase complex with a substrate analog: Insights into the distinctive substrate specificity in the CE7 carbohydrate esterase family. Singh MK; Manoj N Biochem Biophys Res Commun; 2016 Jul; 476(2):63-8. PubMed ID: 27181355 [TBL] [Abstract][Full Text] [Related]
55. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. Drozdowicz YM; Lu YP; Patel V; Fitz-Gibbon S; Miller JH; Rea PA FEBS Lett; 1999 Nov; 460(3):505-12. PubMed ID: 10556526 [TBL] [Abstract][Full Text] [Related]
56. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Teplyakov A; Obmolova G; Wilson KS; Ishii K; Kaji H; Samejima T; Kuranova I Protein Sci; 1994 Jul; 3(7):1098-107. PubMed ID: 7920256 [TBL] [Abstract][Full Text] [Related]
57. H+-proton-pumping inorganic pyrophosphatase: a tightly membrane-bound family. Baltscheffsky M; Schultz A; Baltscheffsky H FEBS Lett; 1999 Jun; 452(3):121-7. PubMed ID: 10386575 [TBL] [Abstract][Full Text] [Related]
58. A new type of Na(+)-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. Schulz S; Iglesias-Cans M; Krah A; Yildiz O; Leone V; Matthies D; Cook GM; Faraldo-Gómez JD; Meier T PLoS Biol; 2013; 11(6):e1001596. PubMed ID: 23824040 [TBL] [Abstract][Full Text] [Related]
59. Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Gordon-Weeks R; Parmar S; Davies TG; Leigh RA Biochem J; 1999 Feb; 337 ( Pt 3)(Pt 3):373-7. PubMed ID: 9895279 [TBL] [Abstract][Full Text] [Related]
60. Probing essential water in yeast pyrophosphatase by directed mutagenesis and fluoride inhibition measurements. Pohjanjoki P; Fabrichniy IP; Kasho VN; Cooperman BS; Goldman A; Baykov AA; Lahti R J Biol Chem; 2001 Jan; 276(1):434-41. PubMed ID: 11031269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]