BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27922659)

  • 1. Eye Movement Analysis and Cognitive Assessment. The Use of Comparative Visual Search Tasks in a Non-immersive VR Application.
    Rosa PJ; Gamito P; Oliveira J; Morais D; Pavlovic M; Smyth O; Maia I; Gomes T
    Methods Inf Med; 2017 Mar; 56(2):112-116. PubMed ID: 27922659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of visual and linguistic tasks using eye-movement features.
    Coco MI; Keller F
    J Vis; 2014 Mar; 14(3):11. PubMed ID: 24610954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the Relationship Between Eye Movement Parameters and Cognitive Functions in Non-demented Parkinson's Disease Patients with Eye Tracking.
    Wong OWH; Fung GPC; Chan S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual and memory search in complex environments: determinants of eye movements and search performance.
    Huestegge L; Radach R
    Ergonomics; 2012; 55(9):1009-27. PubMed ID: 22725621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Cognitive Functions through the Systemic Lisbon Battery: Normative Data.
    Gamito P; Oliveira J; Brito R; Lopes P; Rodelo L; Pinto L; Morais D
    Methods Inf Med; 2016; 55(1):93-7. PubMed ID: 26660359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality.
    Hu Z; Bulling A; Li S; Wang G
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):1992-2004. PubMed ID: 34962869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers.
    Čegovnik T; Stojmenova K; Jakus G; Sodnik J
    Appl Ergon; 2018 Apr; 68():1-11. PubMed ID: 29409621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse Yarbus process: predicting observers' task from eye movement patterns.
    Haji-Abolhassani A; Clark JJ
    Vision Res; 2014 Oct; 103():127-42. PubMed ID: 25175112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye-movement study and human performance using telepathology virtual slides: implications for medical education and differences with experience.
    Krupinski EA; Tillack AA; Richter L; Henderson JT; Bhattacharyya AK; Scott KM; Graham AR; Descour MR; Davis JR; Weinstein RS
    Hum Pathol; 2006 Dec; 37(12):1543-56. PubMed ID: 17129792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of virtual reality cognitive training for attention enhancement.
    Cho BH; Ku J; Jang DP; Kim S; Lee YH; Kim IY; Lee JH; Kim SI
    Cyberpsychol Behav; 2002 Apr; 5(2):129-37. PubMed ID: 12025879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults.
    Chen J; Or C
    Appl Ergon; 2017 Nov; 65():437-448. PubMed ID: 28395855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degrading emotional memories induced by a virtual reality paradigm.
    Cuperus AA; Laken M; van den Hout MA; Engelhard IM
    J Behav Ther Exp Psychiatry; 2016 Sep; 52():45-50. PubMed ID: 26999558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fully-Immersive and Automated Virtual Reality System to Assess the Six Domains of Cognition: Protocol for a Feasibility Study.
    Lim JE; Wong WT; Teh TA; Lim SH; Allen JC; Quah JHM; Malhotra R; Tan NC
    Front Aging Neurosci; 2020; 12():604670. PubMed ID: 33488382
    [No Abstract]   [Full Text] [Related]  

  • 15. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty.
    Ušćumlić M; Blankertz B
    J Neural Eng; 2016 Feb; 13(1):016015. PubMed ID: 26726921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye and hand movements during reconstruction of spatial memory.
    Burke MR; Allen RJ; Gonzalez C
    Perception; 2012; 41(7):803-18. PubMed ID: 23155732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of nonclinical dissociation utilizing a virtual environment shows enhanced working memory and attention.
    Saidel-Goley IN; Albiero EE; Flannery KA
    Cyberpsychol Behav Soc Netw; 2012 Feb; 15(2):112-6. PubMed ID: 22149026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye movement characteristics in a mental rotation task presented in virtual reality.
    Tang Z; Liu X; Huo H; Tang M; Qiao X; Chen D; Dong Y; Fan L; Wang J; Du X; Guo J; Tian S; Fan Y
    Front Neurosci; 2023; 17():1143006. PubMed ID: 37051147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of visual realism on search tasks in mixed reality simulation.
    Lee C; Rincon GA; Meyer G; Höllerer T; Bowman DA
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):547-56. PubMed ID: 23428438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Working memory and visuospatial deficits correlate with oculomotor control in children with fetal alcohol spectrum disorder.
    Paolozza A; Rasmussen C; Pei J; Hanlon-Dearman A; Nikkel SM; Andrew G; McFarlane A; Samdup D; Reynolds JN
    Behav Brain Res; 2014 Apr; 263():70-9. PubMed ID: 24486257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.