BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27922659)

  • 21. Investigating the impact of greenery elements in office environments on cognitive performance, visual attention and distraction: An eye-tracking pilot-study in virtual reality.
    Latini A; Marcelli L; Di Giuseppe E; D'Orazio M
    Appl Ergon; 2024 Jul; 118():104286. PubMed ID: 38583317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Task performance and eye activity: predicting behavior relating to cognitive workload.
    Tsai YF; Viirre E; Strychacz C; Chase B; Jung TP
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B176-85. PubMed ID: 17547318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classifying mental states from eye movements during scene viewing.
    Kardan O; Berman MG; Yourganov G; Schmidt J; Henderson JM
    J Exp Psychol Hum Percept Perform; 2015 Dec; 41(6):1502-14. PubMed ID: 26348069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies.
    Wenk N; Penalver-Andres J; Palma R; Buetler KA; Muri R; Nef T; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1037-1042. PubMed ID: 31374766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Feasibility of a Virtual Reality Task for the Cognitive Assessment of Older Adults: The ECO-VR.
    Oliveira CR; Lopes Filho BJ; Sugarman MA; Esteves CS; Lima MM; Moret-Tatay C; Irigaray TQ; Argimon II
    Span J Psychol; 2016 Dec; 19():E95. PubMed ID: 27955716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cognitive control of saccadic eye movements.
    Hutton SB
    Brain Cogn; 2008 Dec; 68(3):327-40. PubMed ID: 19028265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Task-Dependent Visual Behavior in Immersive Environments: A Comparative Study of Free Exploration, Memory and Visual Search.
    Malpica S; Martin D; Serrano A; Gutierrez D; Masia B
    IEEE Trans Vis Comput Graph; 2023 Nov; 29(11):4417-4425. PubMed ID: 37788210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational model for task inference in visual search.
    Haji-Abolhassani A; Clark JJ
    J Vis; 2013 Sep; 13(11):. PubMed ID: 24071637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of tasks and users' characteristics on virtual reality performance.
    Tyndiuk F; Lespinet-Najib V; Thomas G; Schlick C
    Cyberpsychol Behav; 2007 Jun; 10(3):444-52. PubMed ID: 17594269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of an eye-tracking method to assess mental set switching in people with aphasia.
    Heuer S; Pinke ML
    Brain Inj; 2017; 31(5):686-696. PubMed ID: 28406332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clutter in electronic medical records: examining its performance and attentional costs using eye tracking.
    Moacdieh N; Sarter N
    Hum Factors; 2015 Jun; 57(4):591-606. PubMed ID: 25850110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An initial validation of the Virtual Reality Paced Auditory Serial Addition Test in a college sample.
    Parsons TD; Courtney CG
    J Neurosci Methods; 2014 Jan; 222():15-23. PubMed ID: 24184058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive task fulfilment may decrease gaze control performances.
    Meyer C; Gauchard GC; Deviterne D; Perrin PP
    Physiol Behav; 2007 Dec; 92(5):861-6. PubMed ID: 17655886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of eye movement pattern parameters of individuals with different fluid intelligence.
    Abdi Sargezeh B; Ayatollahi A; Daliri MR
    Exp Brain Res; 2019 Jan; 237(1):15-28. PubMed ID: 30298295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The right look for the job: decoding cognitive processes involved in the task from spatial eye-movement patterns.
    Król ME; Król M
    Psychol Res; 2020 Feb; 84(1):245-258. PubMed ID: 29464316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-Related Deficits in Visuospatial Memory Are due to Changes in Preparatory Set and Eye-Hand Coordination.
    Burke MR; Poyser C; Schiessl I
    J Gerontol B Psychol Sci Soc Sci; 2015 Sep; 70(5):682-90. PubMed ID: 24700277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.
    Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M
    Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acute alcohol ingestion on eye movements and cognition: A double-blind, placebo-controlled study.
    Silva JBS; Cristino ED; Almeida NL; Medeiros PCB; Santos NAD
    PLoS One; 2017; 12(10):e0186061. PubMed ID: 29023550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel eye-tracking method to assess attention allocation in individuals with and without aphasia using a dual-task paradigm.
    Heuer S; Hallowell B
    J Commun Disord; 2015; 55():15-30. PubMed ID: 25913549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.