BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27923202)

  • 1. Structure-based optimization of salt-bridge network across the complex interface of PTPN4 PDZ domain with its peptide ligands in neuroglioma.
    Xiao X; He QH; Yu LY; Wang SQ; Li Y; Yang H; Zhang AH; Ma XH; Peng YJ; Chen B
    Comput Biol Chem; 2017 Feb; 66():63-68. PubMed ID: 27923202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain.
    Maisonneuve P; Caillet-Saguy C; Raynal B; Gilquin B; Chaffotte A; Pérez J; Zinn-Justin S; Delepierre M; Buc H; Cordier F; Wolff N
    FEBS J; 2014 Nov; 281(21):4852-65. PubMed ID: 25158884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death.
    Babault N; Cordier F; Lafage M; Cockburn J; Haouz A; Prehaud C; Rey FA; Delepierre M; Buc H; Lafon M; Wolff N
    Structure; 2011 Oct; 19(10):1518-24. PubMed ID: 22000519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains.
    Caillet-Saguy C; Toto A; Guerois R; Maisonneuve P; di Silvio E; Sawyer K; Gianni S; Wolff N
    Sci Rep; 2017 Aug; 7(1):7875. PubMed ID: 28801650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein.
    Lee HS; Yun HY; Lee EW; Shin HC; Kim SJ; Ku B
    J Microbiol; 2022 Apr; 60(4):395-401. PubMed ID: 35089587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ.
    Maisonneuve P; Caillet-Saguy C; Vaney MC; Bibi-Zainab E; Sawyer K; Raynal B; Haouz A; Delepierre M; Lafon M; Cordier F; Wolff N
    J Biol Chem; 2016 Aug; 291(32):16699-708. PubMed ID: 27246854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of carboxyl-terminal peptides of cytosolic-tail of apactin with PDZ domains of NHERF/EBP50 and PDZK-1/CAP70.
    Tandon C; De Lisle RC; Boulatnikov I; Naik PK
    Mol Cell Biochem; 2007 Aug; 302(1-2):157-67. PubMed ID: 17390218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction.
    Bauler TJ; Hendriks WJ; King PD
    PLoS One; 2008; 3(12):e4014. PubMed ID: 19107198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges.
    Blöchliger N; Xu M; Caflisch A
    Biophys J; 2015 May; 108(9):2362-70. PubMed ID: 25954893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide selectivity between the PDZ domains of human pregnancy-related serine proteases (HtrA1, HtrA2, HtrA3, and HtrA4) can be reshaped by different halogen probes.
    Sun ML; Sun LM; Wang YQ
    J Mol Recognit; 2018 Jun; 31(6):e2698. PubMed ID: 29266444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
    Hou T; Zhang W; Case DA; Wang W
    J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and thermodynamic analysis of PDZ-ligand interactions.
    Shepherd TR; Fuentes EJ
    Methods Enzymol; 2011; 488():81-100. PubMed ID: 21195225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.
    Tiwari G; Mohanty D
    PLoS One; 2013; 8(8):e71340. PubMed ID: 23951139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-step binding mechanism for the self-binding peptide recognition of target domains.
    Yang C; Zhang S; Bai Z; Hou S; Wu D; Huang J; Zhou P
    Mol Biosyst; 2016 Apr; 12(4):1201-13. PubMed ID: 26854254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural flexibility of the shank1 PDZ domain is important for its binding to different ligands.
    Lee JH; Park H; Park SJ; Kim HJ; Eom SH
    Biochem Biophys Res Commun; 2011 Apr; 407(1):207-12. PubMed ID: 21376703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions.
    Crivelli JJ; Lemmon G; Kaufmann KW; Meiler J
    J Comput Aided Mol Des; 2013 Dec; 27(12):1051-65. PubMed ID: 24305904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3.
    Piao L; Chen Z; Li Q; Liu R; Song W; Kong R; Chang S
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bivalent peptides as PDZ domain ligands.
    Klosi E; Saro D; Spaller MR
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6147-50. PubMed ID: 17890086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.