These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development of equations for predicting methane emissions from ruminants. Ramin M; Huhtanen P J Dairy Sci; 2013 Apr; 96(4):2476-2493. PubMed ID: 23403199 [TBL] [Abstract][Full Text] [Related]
4. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Hristov AN; Oh J; Firkins JL; Dijkstra J; Kebreab E; Waghorn G; Makkar HP; Adesogan AT; Yang W; Lee C; Gerber PJ; Henderson B; Tricarico JM J Anim Sci; 2013 Nov; 91(11):5045-69. PubMed ID: 24045497 [TBL] [Abstract][Full Text] [Related]
5. Short-term methane emissions from 2 dairy farms in California estimated by different measurement techniques and US Environmental Protection Agency inventory methodology: A case study. Arndt C; Leytem AB; Hristov AN; Zavala-Araiza D; Cativiela JP; Conley S; Daube C; Faloona I; Herndon SC J Dairy Sci; 2018 Dec; 101(12):11461-11479. PubMed ID: 30316601 [TBL] [Abstract][Full Text] [Related]
6. Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics. Ricci P; Rooke JA; Nevison I; Waterhouse A J Anim Sci; 2013 Nov; 91(11):5379-89. PubMed ID: 24174549 [TBL] [Abstract][Full Text] [Related]
7. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. Grainger C; Clarke T; McGinn SM; Auldist MJ; Beauchemin KA; Hannah MC; Waghorn GC; Clark H; Eckard RJ J Dairy Sci; 2007 Jun; 90(6):2755-66. PubMed ID: 17517715 [TBL] [Abstract][Full Text] [Related]
8. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe. Svinurai W; Mapanda F; Sithole D; Moyo EN; Ndidzano K; Tsiga A; Zhakata W Sci Total Environ; 2018 Mar; 616-617():710-719. PubMed ID: 29122353 [TBL] [Abstract][Full Text] [Related]
9. Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. O'Neill BF; Deighton MH; O'Loughlin BM; Mulligan FJ; Boland TM; O'Donovan M; Lewis E J Dairy Sci; 2011 Apr; 94(4):1941-51. PubMed ID: 21426985 [TBL] [Abstract][Full Text] [Related]
10. Relevance of sward structure and forage nutrient contents in explaining methane emissions from grazing beef cattle and sheep. da Cunha LL; Bremm C; Savian JV; Zubieta ÁS; Rossetto J; de Faccio Carvalho PC Sci Total Environ; 2023 Apr; 869():161695. PubMed ID: 36693572 [TBL] [Abstract][Full Text] [Related]
11. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Hristov AN; Ott T; Tricarico J; Rotz A; Waghorn G; Adesogan A; Dijkstra J; Montes F; Oh J; Kebreab E; Oosting SJ; Gerber PJ; Henderson B; Makkar HP; Firkins JL J Anim Sci; 2013 Nov; 91(11):5095-113. PubMed ID: 24045470 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. McGinn SM; Beauchemin KA; Iwaasa AD; McAllister TA J Environ Qual; 2006; 35(5):1686-91. PubMed ID: 16899740 [TBL] [Abstract][Full Text] [Related]
13. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Zubieta ÁS; Savian JV; de Souza Filho W; Wallau MO; Gómez AM; Bindelle J; Bonnet OJF; de Faccio Carvalho PC Sci Total Environ; 2021 Feb; 754():142029. PubMed ID: 33254863 [TBL] [Abstract][Full Text] [Related]
14. Decreasing methane yield with increasing food intake keeps daily methane emissions constant in two foregut fermenting marsupials, the western grey kangaroo and red kangaroo. Vendl C; Clauss M; Stewart M; Leggett K; Hummel J; Kreuzer M; Munn A J Exp Biol; 2015 Nov; 218(Pt 21):3425-34. PubMed ID: 26538176 [TBL] [Abstract][Full Text] [Related]
15. Potential environmental benefits of ionophores in ruminant diets. Tedeschi LO; Fox DG; Tylutki TP J Environ Qual; 2003; 32(5):1591-602. PubMed ID: 14535299 [TBL] [Abstract][Full Text] [Related]
16. Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. Hristov AN J Anim Sci; 2012 Apr; 90(4):1371-5. PubMed ID: 22178852 [TBL] [Abstract][Full Text] [Related]
17. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Pickering NK; Oddy VH; Basarab J; Cammack K; Hayes B; Hegarty RS; Lassen J; McEwan JC; Miller S; Pinares-Patiño CS; de Haas Y Animal; 2015 Sep; 9(9):1431-40. PubMed ID: 26055577 [TBL] [Abstract][Full Text] [Related]
18. Effect of dried distillers grains plus solubles on enteric methane emissions and nitrogen excretion from growing beef cattle. Hünerberg M; McGinn SM; Beauchemin KA; Okine EK; Harstad OM; McAllister TA J Anim Sci; 2013 Jun; 91(6):2846-57. PubMed ID: 23508022 [TBL] [Abstract][Full Text] [Related]
19. Milk production and enteric methane emissions by dairy cows grazing fertilized perennial ryegrass pasture with or without inclusion of white clover. Enriquez-Hidalgo D; Gilliland T; Deighton MH; O'Donovan M; Hennessy D J Dairy Sci; 2014 Mar; 97(3):1400-12. PubMed ID: 24393178 [TBL] [Abstract][Full Text] [Related]
20. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns. Dangal SRS; Tian H; Zhang B; Pan S; Lu C; Yang J Glob Chang Biol; 2017 Oct; 23(10):4147-4161. PubMed ID: 28370720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]