BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27924003)

  • 1. The combination of direct and paired link graphs can boost repetitive genome assembly.
    Shi W; Ji P; Zhao F
    Nucleic Acids Res; 2017 Apr; 45(6):e43. PubMed ID: 27924003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paired de bruijn graphs: a novel approach for incorporating mate pair information into genome assemblers.
    Medvedev P; Pham S; Chaisson M; Tesler G; Pevzner P
    J Comput Biol; 2011 Nov; 18(11):1625-34. PubMed ID: 21999285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPGA: de novo assembly using the distributions of reads and insert size.
    Luo J; Wang J; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Mar; 31(6):825-33. PubMed ID: 25406329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOSS: a novel scaffolding algorithm based on an optimized scaffold graph.
    Luo J; Wang J; Zhang Z; Li M; Wu FX
    Bioinformatics; 2017 Jan; 33(2):169-176. PubMed ID: 27634951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat-aware evaluation of scaffolding tools.
    Mandric I; Knyazev S; Zelikovsky A
    Bioinformatics; 2018 Aug; 34(15):2530-2537. PubMed ID: 29547882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of long, error-prone reads using repeat graphs.
    Kolmogorov M; Yuan J; Lin Y; Pevzner PA
    Nat Biotechnol; 2019 May; 37(5):540-546. PubMed ID: 30936562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
    Zerbino DR; Birney E
    Genome Res; 2008 May; 18(5):821-9. PubMed ID: 18349386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telescoper: de novo assembly of highly repetitive regions.
    Bresler M; Sheehan S; Chan AH; Song YS
    Bioinformatics; 2012 Sep; 28(18):i311-i317. PubMed ID: 22962446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AGORA: Assembly Guided by Optical Restriction Alignment.
    Lin HC; Goldstein S; Mendelowitz L; Zhou S; Wetzel J; Schwartz DC; Pop M
    BMC Bioinformatics; 2012 Aug; 13():189. PubMed ID: 22856673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathset graphs: a novel approach for comprehensive utilization of paired reads in genome assembly.
    Pham SK; Antipov D; Sirotkin A; Tesler G; Pevzner PA; Alekseyev MA
    J Comput Biol; 2013 Apr; 20(4):359-71. PubMed ID: 22803627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast de Bruijn Graph Compaction in Distributed Memory Environments.
    Pan T; Nihalani R; Aluru S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):136-148. PubMed ID: 30072337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.