BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27924003)

  • 21. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome Assembly.
    Clum A
    Methods Mol Biol; 2018; 1775():141-153. PubMed ID: 29876816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional bias in variant calls against draft reference assemblies.
    Briskine RV; Shimizu KK
    BMC Genomics; 2017 Mar; 18(1):263. PubMed ID: 28351369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole genome assembly from 454 sequencing output via modified DNA graph concept.
    Blazewicz J; Bryja M; Figlerowicz M; Gawron P; Kasprzak M; Kirton E; Platt D; Przybytek J; Swiercz A; Szajkowski L
    Comput Biol Chem; 2009 Jun; 33(3):224-30. PubMed ID: 19477687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. String graph construction using incremental hashing.
    Ben-Bassat I; Chor B
    Bioinformatics; 2014 Dec; 30(24):3515-23. PubMed ID: 25183486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What is the difference between the breakpoint graph and the de Bruijn graph?
    Lin Y; Nurk S; Pevzner PA
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S6. PubMed ID: 25572416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Guide to Sequencing for Long Repetitive Regions.
    Kono N
    Methods Mol Biol; 2023; 2632():131-146. PubMed ID: 36781726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contig-Layout-Authenticator (CLA): A Combinatorial Approach to Ordering and Scaffolding of Bacterial Contigs for Comparative Genomics and Molecular Epidemiology.
    Shaik S; Kumar N; Lankapalli AK; Tiwari SK; Baddam R; Ahmed N
    PLoS One; 2016; 11(6):e0155459. PubMed ID: 27248146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. U
    Castro CJ; Ng TFF
    J Comput Biol; 2017 Nov; 24(11):1071-1080. PubMed ID: 28418726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HINGE: long-read assembly achieves optimal repeat resolution.
    Kamath GM; Shomorony I; Xia F; Courtade TA; Tse DN
    Genome Res; 2017 May; 27(5):747-756. PubMed ID: 28320918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MeDuSa: a multi-draft based scaffolder.
    Bosi E; Donati B; Galardini M; Brunetti S; Sagot MF; Lió P; Crescenzi P; Fani R; Fondi M
    Bioinformatics; 2015 Aug; 31(15):2443-51. PubMed ID: 25810435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.