These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27924003)

  • 61. De novo detection of copy number variation by co-assembly.
    Nijkamp JF; van den Broek MA; Geertman JM; Reinders MJ; Daran JM; de Ridder D
    Bioinformatics; 2012 Dec; 28(24):3195-202. PubMed ID: 23047563
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detection of structural variants involving repetitive regions in the reference genome.
    Lee H; Popodi E; Foster PL; Tang H
    J Comput Biol; 2014 Mar; 21(3):219-33. PubMed ID: 24552580
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 67. De novo assembly of viral quasispecies using overlap graphs.
    Baaijens JA; Aabidine AZE; Rivals E; Schönhuth A
    Genome Res; 2017 May; 27(5):835-848. PubMed ID: 28396522
    [TBL] [Abstract][Full Text] [Related]  

  • 68. AMASS: a structured pattern matching approach to shotgun sequence assembly.
    Kim S; Segre AM
    J Comput Biol; 1999; 6(2):163-86. PubMed ID: 10421521
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A novel scaffolding algorithm based on contig error correction and path extension.
    Li M; Tang L; Liao Z; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jul; ():. PubMed ID: 30040649
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improved gap size estimation for scaffolding algorithms.
    Sahlin K; Street N; Lundeberg J; Arvestad L
    Bioinformatics; 2012 Sep; 28(17):2215-22. PubMed ID: 22923455
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach.
    Dvirnas A; Pichler C; Stewart CL; Quaderi S; Nyberg LK; Müller V; Kumar Bikkarolla S; Kristiansson E; Sandegren L; Westerlund F; Ambjörnsson T
    PLoS One; 2018; 13(3):e0193900. PubMed ID: 29522539
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exploring Frequented Regions in Pan-Genomic Graphs.
    Cleary A; Ramaraj T; Kahanda I; Mudge J; Mumey B
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1424-1435. PubMed ID: 30106690
    [TBL] [Abstract][Full Text] [Related]  

  • 74. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Long Range Sequencing and Validation of Insect Genome Assemblies.
    Saha S
    Methods Mol Biol; 2019; 1858():33-44. PubMed ID: 30414109
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RGFA: powerful and convenient handling of assembly graphs.
    Gonnella G; Kurtz S
    PeerJ; 2016; 4():e2681. PubMed ID: 27843717
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Sequence Distance Graph framework for genome assembly and analysis.
    Yanes L; Garcia Accinelli G; Wright J; Ward BJ; Clavijo BJ
    F1000Res; 2019; 8():1490. PubMed ID: 31723420
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Filling gaps of genome scaffolds via probabilistic searching optical maps against assembly graph.
    Huang B; Wei G; Wang B; Ju F; Zhong Y; Shi Z; Sun S; Bu D
    BMC Bioinformatics; 2021 Oct; 22(1):533. PubMed ID: 34717539
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SLHSD: hybrid scaffolding method based on short and long reads.
    Luo J; Guan T; Chen G; Yu Z; Zhai H; Yan C; Luo H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37141142
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Using suffix tree to discover complex repetitive patterns in DNA sequences.
    He D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3474-7. PubMed ID: 17945779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.