BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27924150)

  • 1. Increasing n-butanol production with
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():257. PubMed ID: 27924150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA.
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():44. PubMed ID: 26913077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a homobutanol fermentation pathway in Escherichia coli EG03.
    Garza E; Zhao J; Wang Y; Wang J; Iverson A; Manow R; Finan C; Zhou S
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1101-7. PubMed ID: 22776992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.
    Shen CR; Lan EI; Dekishima Y; Baez A; Cho KM; Liao JC
    Appl Environ Microbiol; 2011 May; 77(9):2905-15. PubMed ID: 21398484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic poly-3-D-hydroxybutyrate production from xylose in recombinant Saccharomyces cerevisiae using a NADH-dependent acetoacetyl-CoA reductase.
    de Las Heras AM; Portugal-Nunes DJ; Rizza N; Sandström AG; Gorwa-Grauslund MF
    Microb Cell Fact; 2016 Nov; 15(1):197. PubMed ID: 27863495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes.
    Loder AJ; Zeldes BM; Garrison GD; Lipscomb GL; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7187-200. PubMed ID: 26253677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli.
    Dekishima Y; Lan EI; Shen CR; Cho KM; Liao JC
    J Am Chem Soc; 2011 Aug; 133(30):11399-401. PubMed ID: 21707101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving acetyl-CoA biosynthesis in
    Liu W; Zhang B; Jiang R
    Biotechnol Biofuels; 2017; 10():41. PubMed ID: 28239413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae.
    Garces Daza F; Haitz F; Born A; Boles E
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):71. PubMed ID: 37101299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway.
    Sakuragi H; Morisaka H; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2015; 79(2):314-20. PubMed ID: 25348391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Tajima T; Yakushi T; Matsushita K; Kato J
    J Biotechnol; 2015 Jun; 204():25-32. PubMed ID: 25865277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.