These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 27924278)
1. Domain-based biophysical characterization of the structural and thermal stability of FliG, an essential rotor component of the Na Onoue Y; Abe-Yoshizumi R; Gohara M; Nishino Y; Kobayashi S; Asami Y; Homma M Biophys Physicobiol; 2016; 13():227-233. PubMed ID: 27924278 [TBL] [Abstract][Full Text] [Related]
2. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor. Gohara M; Kobayashi S; Abe-Yoshizumi R; Nonoyama N; Kojima S; Asami Y; Homma M J Biochem; 2014 Feb; 155(2):83-9. PubMed ID: 24174548 [TBL] [Abstract][Full Text] [Related]
3. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor. Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326 [TBL] [Abstract][Full Text] [Related]
4. Structural and Functional Analysis of the C-Terminal Region of FliG, an Essential Motor Component of Vibrio Na Miyanoiri Y; Hijikata A; Nishino Y; Gohara M; Onoue Y; Kojima S; Kojima C; Shirai T; Kainosho M; Homma M Structure; 2017 Oct; 25(10):1540-1548.e3. PubMed ID: 28919442 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the flagellar motor composed of functional GFP-fusion derivatives of FliG in the Na Koike M; Nishioka N; Kojima S; Homma M Biophysics (Nagoya-shi); 2011; 7():59-67. PubMed ID: 27857593 [TBL] [Abstract][Full Text] [Related]
6. Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus. Kojima S; Nonoyama N; Takekawa N; Fukuoka H; Homma M J Mol Biol; 2011 Nov; 414(1):62-74. PubMed ID: 21986199 [TBL] [Abstract][Full Text] [Related]
7. Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. Takekawa N; Kojima S; Homma M J Bacteriol; 2014 Apr; 196(7):1377-85. PubMed ID: 24464458 [TBL] [Abstract][Full Text] [Related]
8. Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor. Kinoshita M; Namba K; Minamino T Genes Cells; 2018 Mar; 23(3):241-247. PubMed ID: 29405551 [TBL] [Abstract][Full Text] [Related]
9. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor. Pandini A; Kleinjung J; Rasool S; Khan S PLoS One; 2015; 10(11):e0142407. PubMed ID: 26561852 [TBL] [Abstract][Full Text] [Related]
10. Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio. Nishikino T; Hijikata A; Miyanoiri Y; Onoue Y; Kojima S; Shirai T; Homma M Sci Rep; 2018 Dec; 8(1):17793. PubMed ID: 30542147 [TBL] [Abstract][Full Text] [Related]
11. Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor. Terashima H; Kojima S; Homma M J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619152 [TBL] [Abstract][Full Text] [Related]
12. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Lloyd SA; Whitby FG; Blair DF; Hill CP Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379 [TBL] [Abstract][Full Text] [Related]
13. Characterization of PomA mutants defective in the functional assembly of the Na(+)-driven flagellar motor in Vibrio alginolyticus. Takekawa N; Li N; Kojima S; Homma M J Bacteriol; 2012 Apr; 194(8):1934-9. PubMed ID: 22343296 [TBL] [Abstract][Full Text] [Related]
14. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Yorimitsu T; Mimaki A; Yakushi T; Homma M J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195 [TBL] [Abstract][Full Text] [Related]
15. The Gearbox of the Bacterial Flagellar Motor Switch. Pandini A; Morcos F; Khan S Structure; 2016 Jul; 24(7):1209-20. PubMed ID: 27345932 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Zhou J; Lloyd SA; Blair DF Proc Natl Acad Sci U S A; 1998 May; 95(11):6436-41. PubMed ID: 9600984 [TBL] [Abstract][Full Text] [Related]
17. Ring formation by Takahashi K; Nishikino T; Kajino H; Kojima S; Uchihashi T; Homma M Biophys Physicobiol; 2023; 20(2):e200028. PubMed ID: 38496245 [TBL] [Abstract][Full Text] [Related]
18. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. Lloyd SA; Blair DF J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466 [TBL] [Abstract][Full Text] [Related]
19. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring. Kim EA; Panushka J; Meyer T; Ide N; Carlisle R; Baker S; Blair DF J Mol Biol; 2017 Jul; 429(15):2353-2359. PubMed ID: 28625846 [TBL] [Abstract][Full Text] [Related]
20. Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation. Onoue Y; Kojima S; Homma M J Biochem; 2015 Dec; 158(6):523-9. PubMed ID: 26142283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]