These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27924314)

  • 1. Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions.
    Pegis ML; McKeown BA; Kumar N; Lang K; Wasylenko DJ; Zhang XP; Raugei S; Mayer JM
    ACS Cent Sci; 2016 Nov; 2(11):850-856. PubMed ID: 27924314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O
    Martin DJ; Wise CF; Pegis ML; Mayer JM
    Acc Chem Res; 2020 May; 53(5):1056-1065. PubMed ID: 32281786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking a Molecular Scaling Relationship Using an Iron-Iron Fused Porphyrin Electrocatalyst for Oxygen Reduction.
    Nishiori D; Menzel JP; Armada N; Reyes Cruz EA; Nannenga BL; Batista VS; Moore GF
    J Am Chem Soc; 2024 May; 146(17):11622-11633. PubMed ID: 38639470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining scaling relationships overcomes rate versus overpotential trade-offs in O
    Martin DJ; Mercado BQ; Mayer JM
    Sci Adv; 2020 Mar; 6(11):eaaz3318. PubMed ID: 32201730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron-porphyrin complexes.
    Rigsby ML; Wasylenko DJ; Pegis ML; Mayer JM
    J Am Chem Soc; 2015 Apr; 137(13):4296-9. PubMed ID: 25798713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Doped CrS
    Qin Z; Wang Z; Li X; Cai Q; Li F; Zhao J
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts.
    Pegis ML; Wise CF; Martin DJ; Mayer JM
    Chem Rev; 2018 Mar; 118(5):2340-2391. PubMed ID: 29406708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic Hydrogen Evolution using a Nickel-based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface.
    Trowbridge L; Averkiev B; Sues PE
    Chemistry; 2023 Nov; 29(65):e202301920. PubMed ID: 37665793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bamboo-like nitrogen-doped porous carbon nanofibers encapsulated nickel-cobalt alloy nanoparticles composite material derived from the electrospun fiber of a bimetal-organic framework as efficient bifunctional oxygen electrocatalysts.
    Feng C; Guo Y; Xie Y; Cao X; Li S; Zhang L; Wang W; Wang J
    Nanoscale; 2020 Mar; 12(10):5942-5952. PubMed ID: 32108837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.
    Wang FF; Wei PJ; Yu GQ; Liu JG
    Chemistry; 2016 Jan; 22(1):382-9. PubMed ID: 26602327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Metal-Free Imidazole-Benzimidazole Electrocatalysts for Oxygen Reduction in Aqueous Solutions.
    Tanjedrew N; Thammanatpong K; Surawatanawong P; Chakthranont P; Chantarojsiri T; Unjarern T; Kiatisevi S
    Chemistry; 2024 Jan; 30(5):e202302854. PubMed ID: 37924228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction.
    Qiao M; Titirici MM
    Chemistry; 2018 Dec; 24(69):18374-18384. PubMed ID: 30307068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-N-Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction.
    Hu F; Yang H; Wang C; Zhang Y; Lu H; Wang Q
    Small; 2017 Jan; 13(3):. PubMed ID: 27753222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction.
    Morozan A; Jégou P; Jousselme B; Palacin S
    Phys Chem Chem Phys; 2011 Dec; 13(48):21600-7. PubMed ID: 22068682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroreduction of CO
    Dey S; Todorova TK; Fontecave M; Mougel V
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15726-15733. PubMed ID: 32673413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au).
    Fernández JL; Walsh DA; Bard AJ
    J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Preparation of Fe-N
    Zhao YM; Zhang PC; Xu C; Zhou XY; Liao LM; Wei PJ; Liu E; Chen H; He Q; Liu JG
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17334-17342. PubMed ID: 32207602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene.
    Du J; Chen C; Cheng F; Chen J
    Inorg Chem; 2015 Jun; 54(11):5467-74. PubMed ID: 25989252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.