These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 27924563)
1. High-Throughput In Vitro Identification of Direct MAPK/Erk Substrates. Grossman R; Paroush Z Methods Mol Biol; 2017; 1487():127-135. PubMed ID: 27924563 [TBL] [Abstract][Full Text] [Related]
2. Identification of MAPK Substrates Using Quantitative Phosphoproteomics. Zhang T; Schneider JD; Zhu N; Chen S Methods Mol Biol; 2017; 1578():133-142. PubMed ID: 28220420 [TBL] [Abstract][Full Text] [Related]
3. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Bardwell AJ; Abdollahi M; Bardwell L Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172 [TBL] [Abstract][Full Text] [Related]
4. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE. Kosako H; Motani K Methods Mol Biol; 2017; 1487():137-149. PubMed ID: 27924564 [TBL] [Abstract][Full Text] [Related]
5. Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE. Yoshikawa H; Nishino K; Kosako H J Proteomics; 2022 Apr; 258():104543. PubMed ID: 35231659 [TBL] [Abstract][Full Text] [Related]
6. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: effect on myotube fusion. Roffe S; Hagai Y; Pines M; Halevy O Exp Cell Res; 2010 Apr; 316(6):1061-9. PubMed ID: 20060825 [TBL] [Abstract][Full Text] [Related]
8. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions. Shen CP; Tsimberg Y; Salvadore C; Meller E BMC Neurosci; 2004 Sep; 5():36. PubMed ID: 15380027 [TBL] [Abstract][Full Text] [Related]
9. Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. Jiménez E; Montiel M J Cell Physiol; 2005 Aug; 204(2):678-86. PubMed ID: 15744749 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and molecular analysis of the interaction between ERK2 MAP kinase and hypoxia inducible factor-1α. Karapetsas A; Giannakakis A; Pavlaki M; Panayiotidis M; Sandaltzopoulos R; Galanis A Int J Biochem Cell Biol; 2011 Nov; 43(11):1582-90. PubMed ID: 21807114 [TBL] [Abstract][Full Text] [Related]
11. The Drosophila protein kinase LK6 is regulated by ERK and phosphorylates the eukaryotic initiation factor eIF4E in vivo. Parra-Palau JL; Scheper GC; Harper DE; Proud CG Biochem J; 2005 Feb; 385(Pt 3):695-702. PubMed ID: 15487973 [TBL] [Abstract][Full Text] [Related]
12. [The role of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance of hepatocellular carcinoma]. Zhu H; Chen XP; Luo SF; Guan J; Zhang WG; Zhang BX; Mao CP Zhonghua Wai Ke Za Zhi; 2007 Jul; 45(13):917-20. PubMed ID: 17953842 [TBL] [Abstract][Full Text] [Related]
13. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Kosako H; Yamaguchi N; Aranami C; Ushiyama M; Kose S; Imamoto N; Taniguchi H; Nishida E; Hattori S Nat Struct Mol Biol; 2009 Oct; 16(10):1026-35. PubMed ID: 19767751 [TBL] [Abstract][Full Text] [Related]
14. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Maizels ET; Mukherjee A; Sithanandam G; Peters CA; Cottom J; Mayo KE; Hunzicker-Dunn M Mol Endocrinol; 2001 May; 15(5):716-33. PubMed ID: 11328854 [TBL] [Abstract][Full Text] [Related]
15. Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells. Reffas S; Schlegel W Biochem J; 2000 Dec; 352 Pt 3(Pt 3):701-8. PubMed ID: 11104676 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Allan LA; Morrice N; Brady S; Magee G; Pathak S; Clarke PR Nat Cell Biol; 2003 Jul; 5(7):647-54. PubMed ID: 12792650 [TBL] [Abstract][Full Text] [Related]
17. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Eblen ST; Catling AD; Assanah MC; Weber MJ Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199 [TBL] [Abstract][Full Text] [Related]
18. Development and implementation of three mitogen-activated protein kinase (MAPK) signaling pathway imaging assays to provide MAPK module selectivity profiling for kinase inhibitors: MK2-EGFP translocation, c-Jun, and ERK activation. Nickischer D; Laethem C; Trask OJ; Williams RG; Kandasamy R; Johnston PA; Johnston PA Methods Enzymol; 2006; 414():389-418. PubMed ID: 17110204 [TBL] [Abstract][Full Text] [Related]
20. Retinoic acid selectively activates the ERK2 but not JNK/SAPK or p38 MAP kinases when inducing myeloid differentiation. Yen A; Roberson MS; Varvayanis S In Vitro Cell Dev Biol Anim; 1999 Oct; 35(9):527-32. PubMed ID: 10548434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]