BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27924564)

  • 1. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE.
    Kosako H; Motani K
    Methods Mol Biol; 2017; 1487():137-149. PubMed ID: 27924564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE.
    Motani K; Kosako H
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):57-61. PubMed ID: 29883688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and validation of new ERK substrates by phosphoproteomic technologies including Phos-tag SDS-PAGE.
    Yoshikawa H; Nishino K; Kosako H
    J Proteomics; 2022 Apr; 258():104543. PubMed ID: 35231659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic identification of p38 MAP kinase substrates using in vitro phosphorylation.
    Iida N; Fujita M; Miyazawa K; Kobayashi M; Hattori S
    Electrophoresis; 2014 Feb; 35(4):554-62. PubMed ID: 24288278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport.
    Kosako H; Yamaguchi N; Aranami C; Ushiyama M; Kose S; Imamoto N; Taniguchi H; Nishida E; Hattori S
    Nat Struct Mol Biol; 2009 Oct; 16(10):1026-35. PubMed ID: 19767751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.
    Vicente-Rodríguez M; Gramage E; Herradón G; Pérez-García C
    Toxicology; 2013 Dec; 314(1):166-73. PubMed ID: 24096156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis.
    Machida M; Kosako H; Shirakabe K; Kobayashi M; Ushiyama M; Inagawa J; Hirano J; Nakano T; Bando Y; Nishida E; Hattori S
    FEBS J; 2007 Mar; 274(6):1576-87. PubMed ID: 17480206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis.
    Deng Z; Bu S; Wang ZY
    Methods Mol Biol; 2012; 876():47-66. PubMed ID: 22576085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings.
    Aryal UK; Ross AR; Krochko JE
    PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DIGE-Based Phosphoproteomic Analysis.
    Stasyk T; Huber LA
    Methods Mol Biol; 2023; 2596():97-104. PubMed ID: 36378433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIGE-Based Phosphoproteomic Analysis.
    Stasyk T; Huber LA
    Methods Mol Biol; 2018; 1664():79-86. PubMed ID: 29019126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospho-DIGE Identified Phosphoproteins Involved in Pathways Related to Tumour Growth in Endometrial Cancer.
    Capaci V; Arrigoni G; Monasta L; Aloisio M; Rocca G; Di Lorenzo G; Licastro D; Romano F; Ricci G; Ura B
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified metal-oxide affinity enrichment combined with 2D-PAGE and analysis of phosphoproteomes.
    Colby T; Röhrig H; Harzen A; Schmidt J
    Methods Mol Biol; 2011; 779():273-86. PubMed ID: 21837573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Deciphering cellular processes responding to lethality of 17
    Li Y; Liu X; Wang Y; Liu Z; Ye M; Wang H
    Se Pu; 2024 Apr; 42(4):333-344. PubMed ID: 38566422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics.
    Tsai CF; Wang YT; Chen YR; Lai CY; Lin PY; Pan KT; Chen JY; Khoo KH; Chen YJ
    J Proteome Res; 2008 Sep; 7(9):4058-69. PubMed ID: 18707149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected.
    Demant M; Trapphoff T; Fröhlich T; Arnold GJ; Eichenlaub-Ritter U
    Hum Reprod; 2012 Apr; 27(4):1096-111. PubMed ID: 22258663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells.
    Santamaría E; Sánchez-Quiles V; Fernández-Irigoyen J; Corrales FJ
    Methods Mol Biol; 2012; 909():165-80. PubMed ID: 22903716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global quantification of phosphoproteins combining metabolic labeling and gel-based proteomics in B. pumilus.
    Hentschker C; Dewald C; Otto A; Büttner K; Hecker M; Becher D
    Electrophoresis; 2018 Jan; 39(2):334-343. PubMed ID: 28944503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.