These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27924604)

  • 1. Exploring Genome-Wide Expression Profiles Using Machine Learning Techniques.
    Kebschull M; Papapanou PN
    Methods Mol Biol; 2017; 1537():347-364. PubMed ID: 27924604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Expression, Functional and Machine Learning Analysis of High-Throughput -Omics Data Using Open-Source Tools.
    Kebschull M; Kroeger AT; Papapanou PN
    Methods Mol Biol; 2023; 2588():317-351. PubMed ID: 36418696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Analysis of Periodontal and Peri-Implant Cells and Tissues.
    Kebschull M; Hülsmann C; Hoffmann P; Papapanou PN
    Methods Mol Biol; 2017; 1537():307-326. PubMed ID: 27924602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Expression and Functional Analysis of High-Throughput -Omics Data Using Open Source Tools.
    Kebschull M; Fittler MJ; Demmer RT; Papapanou PN
    Methods Mol Biol; 2017; 1537():327-345. PubMed ID: 27924603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.
    van IJzendoorn DGP; Szuhai K; Briaire-de Bruijn IH; Kostine M; Kuijjer ML; Bovée JVMG
    PLoS Comput Biol; 2019 Feb; 15(2):e1006826. PubMed ID: 30785874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data.
    Withnell E; Zhang X; Sun K; Guo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omada: robust clustering of transcriptomes through multiple testing.
    Kariotis S; Tan PF; Lu H; Rhodes CJ; Wilkins MR; Lawrie A; Wang D
    Gigascience; 2024 Jan; 13():. PubMed ID: 38991852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioM2: biologically informed multi-stage machine learning for phenotype prediction using omics data.
    Zhang S; Li P; Wang S; Zhu J; Huang Z; Cai F; Freidel S; Ling F; Schwarz E; Chen J
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39126426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Master Regulator Genes in Human Periodontitis.
    Sawle AD; Kebschull M; Demmer RT; Papapanou PN
    J Dent Res; 2016 Aug; 95(9):1010-7. PubMed ID: 27302879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards multi-omics characterization of tumor heterogeneity: a comprehensive review of statistical and machine learning approaches.
    Lee D; Park Y; Kim S
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development.
    Zhou J; Schor IE; Yao V; Theesfeld CL; Marco-Ferreres R; Tadych A; Furlong EEM; Troyanskaya OG
    PLoS Genet; 2019 Sep; 15(9):e1008382. PubMed ID: 31553718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning in omics: a survey and guideline.
    Zhang Z; Zhao Y; Liao X; Shi W; Li K; Zou Q; Peng S
    Brief Funct Genomics; 2019 Feb; 18(1):41-57. PubMed ID: 30265280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data.
    Rue-Albrecht K; McGettigan PA; Hernández B; Nalpas NC; Magee DA; Parnell AC; Gordon SV; MacHugh DE
    BMC Bioinformatics; 2016 Mar; 17():126. PubMed ID: 26968614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of gene arrays in deciphering the pathobiology of periodontal diseases.
    Kebschull M; Papapanou PN
    Methods Mol Biol; 2010; 666():385-93. PubMed ID: 20717797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks.
    Sevakula RK; Singh V; Verma NK; Kumar C; Cui Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2089-2100. PubMed ID: 29993662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Molecular Biomarkers for Diseases With Machine Learning Based on Integrative Omics.
    Shi K; Lin W; Zhao XM
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2514-2525. PubMed ID: 32305934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples.
    Waldemarson S; Kurbasic E; Krogh M; Cifani P; Berggård T; Borg Å; James P
    Breast Cancer Res; 2016 Jun; 18(1):69. PubMed ID: 27357824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.