These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27924857)

  • 1. Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions.
    Ishihara H; Chen YC; De Marco N; Lin O; Huang CM; Limsakoune V; Chou YC; Yang Y; Tung V
    Sci Rep; 2016 Dec; 6():38701. PubMed ID: 27924857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression and aggregation-resistant particles of crumpled soft sheets.
    Luo J; Jang HD; Sun T; Xiao L; He Z; Katsoulidis AP; Kanatzidis MG; Gibson JM; Huang J
    ACS Nano; 2011 Nov; 5(11):8943-9. PubMed ID: 21995602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO
    Chen Z; Wang J; Umar A; Wang Y; Li H; Zhou G
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11819-11827. PubMed ID: 28299928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crumpled graphene ball-based broadband solar absorbers.
    Hao W; Chiou K; Qiao Y; Liu Y; Song C; Deng T; Huang J
    Nanoscale; 2018 Apr; 10(14):6306-6312. PubMed ID: 29578232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications.
    Mao S; Wen Z; Kim H; Lu G; Hurley P; Chen J
    ACS Nano; 2012 Aug; 6(8):7505-13. PubMed ID: 22838735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors.
    Mao BS; Wen Z; Bo Z; Chang J; Huang X; Chen J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9881-9. PubMed ID: 24802259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures.
    Carraro F; Cattelan M; Favaro M; Calvillo L
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29882781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks.
    Shin YE; Sa YJ; Park S; Lee J; Shin KH; Joo SH; Ko H
    Nanoscale; 2014 Aug; 6(16):9734-41. PubMed ID: 24998618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.
    Jiang L; Fan Z
    Nanoscale; 2014 Feb; 6(4):1922-45. PubMed ID: 24301688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst.
    Wang M; Wang J; Hou Y; Shi D; Wexler D; Poynton SD; Slade RC; Zhang W; Liu H; Chen J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7066-72. PubMed ID: 25804889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crumpled graphene nanoreactors.
    Wang Z; Lv X; Chen Y; Liu D; Xu X; Palmore GT; Hurt RH
    Nanoscale; 2015 Jun; 7(22):10267-78. PubMed ID: 25992964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2.
    Gao P; Li A; Sun DD; Ng WJ
    J Hazard Mater; 2014 Aug; 279():96-104. PubMed ID: 25038577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the crumpling of polycrystalline graphene by molecular dynamics simulation.
    Becton M; Zhang L; Wang X
    Phys Chem Chem Phys; 2015 Mar; 17(9):6297-304. PubMed ID: 25649010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crumpled graphene balls as rapid and efficient adsorbents for removal of copper ions.
    Chen D; Liu X; Nie H
    J Colloid Interface Sci; 2018 Nov; 530():46-51. PubMed ID: 29960907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniaxially crumpled graphene as a platform for guided myotube formation.
    Kim J; Leem J; Kim HN; Kang P; Choi J; Haque MF; Kang D; Nam S
    Microsyst Nanoeng; 2019; 5():53. PubMed ID: 31700672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sheet morphology on the scalability of graphene-based ultracapacitors.
    Luo J; Jang HD; Huang J
    ACS Nano; 2013 Feb; 7(2):1464-71. PubMed ID: 23350607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors.
    Ji CC; Xu MW; Bao SJ; Cai CJ; Lu ZJ; Chai H; Yang F; Wei H
    J Colloid Interface Sci; 2013 Oct; 407():416-24. PubMed ID: 23880520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.