These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27924997)

  • 1. Characterization of Normal and Freeze-Thawed Tissues in vitro Through The Ultrasonic Integrated Backscatter.
    Sheng L; Yang P; He Z; Wang G; Luo J; Liu J
    Cryo Letters; 2016; 37(5):303-307. PubMed ID: 27924997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound signal wavelet analysis to quantify the microstructures of normal and frozen tissues in vitro.
    Sheng L; Wang G; Li F; Luo J; Liu J
    Cryobiology; 2014 Feb; 68(1):29-34. PubMed ID: 24269529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study Frequency Shift Evaluation of Ultrasound in Fresh and Frozen-thawed Tissues of Cryosurgery by AR Model.
    Luo F; Tany Y; Sun H; Liu J; Sheng L
    Cryo Letters; 2020; 41(3):140-144. PubMed ID: 33988643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Texture Feature Differences between Fresh and Frozen-thawed Ex-vivo Porcine Liver Tissue in B-mode Ultrasonic Imaging.
    Wang G; Liu J; Luo J; Sheng L
    Cryo Letters; 2019; 40(1):58-63. PubMed ID: 30955032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantitative integrated backscatter characteristics in the normal and infarcted canine myocardium].
    Shimazu T; Nishioka H; Fujiwara M; Matsuyama T; Ozaki H; Hamanaka Y; Kitabatake A; Inoue M; Kamada T; Matsumoto M
    J Cardiogr; 1986 Dec; 16(4):799-808. PubMed ID: 3323322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone.
    Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W
    Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound.
    Zhong H; Wan M; Jiang Y; Wang S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound.
    Shishitani T; Matsuzawa R; Yoshizawa S; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1724-30. PubMed ID: 23927213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intervening tissues on ultrasonic backscatter measurements of bone: An in vitro study.
    Hoffmeister BK; Spinolo PL; Sellers ME; Marshall PL; Viano AM; Lee SR
    J Acoust Soc Am; 2015 Oct; 138(4):2449-57. PubMed ID: 26520327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time ultrasonic monitoring of hepatic cryosurgery.
    Gilbert JC; Onik GM; Hoddick WK; Rubinsky B
    Cryobiology; 1985 Aug; 22(4):319-30. PubMed ID: 3896654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic tissue characterization of blood during stasis and thrombosis with a real-time linear-array backscatter imaging system.
    Recchia D; Wickline SA
    Coron Artery Dis; 1993 Nov; 4(11):987-94. PubMed ID: 8173716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. US characteristics of frozen prostate.
    Onik G; Cobb C; Cohen J; Zabkar J; Porterfield B
    Radiology; 1988 Sep; 168(3):629-31. PubMed ID: 3043544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional variation in the measured apparent ultrasonic backscatter of mid-gestational fetal pig hearts.
    Gibson AA; Singh GK; Kulikowska A; Wallace KD; Hoffman JJ; Ludomirsky A; Holland MR
    Ultrasound Med Biol; 2007 Dec; 33(12):1955-62. PubMed ID: 17689180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic characterization of porcine liver tissue at frequency between 25 to 55 MHz.
    Liu XZ; Gong XF; Zhang D; Ye SG; Rui B
    World J Gastroenterol; 2006 Apr; 12(14):2276-9. PubMed ID: 16610036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transducer position on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Lawler BC; Viano AM; Mobley J
    J Acoust Soc Am; 2023 Nov; 154(5):2858-2868. PubMed ID: 37930178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum.
    Bige Y; Hanfeng Z; Rong W
    Ultrasonics; 2006 Feb; 44(2):211-5. PubMed ID: 16387338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of fibrosis in infarcted human hearts by analysis of ultrasonic backscatter.
    Hoyt RH; Collins SM; Skorton DJ; Ericksen EE; Conyers D
    Circulation; 1985 Apr; 71(4):740-4. PubMed ID: 3882268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for quantifying ultrasound backscatter and two-dimensional video intensity: implications for contrast-enhanced sonography.
    Schwarz KQ; Chen X; Steinmetz S
    J Am Soc Echocardiogr; 1998 Feb; 11(2):155-68. PubMed ID: 9517555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of bone density using ultrasonic backscatter.
    Wear KA; Garra BS
    Ultrasound Med Biol; 1998 Jun; 24(5):689-95. PubMed ID: 9695272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. US backscatter and attenuation 30 to 50 MHz and MR T2 at 3 Tesla for differentiation of atherosclerotic artery constituents in vitro.
    Bridal SL; Toussaint JF; Raynaud JS; Fornes P; Leroy-Willig A; Berger G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1517-25. PubMed ID: 18249999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.