These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27925032)

  • 1. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine.
    Silva PA; Oliveira TF; Brasil AC; Vaz JR
    An Acad Bras Cienc; 2016; 88(4):2441-2456. PubMed ID: 27925032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors.
    Stallard T; Collings R; Feng T; Whelan J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120159. PubMed ID: 23319702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic jets as a flow control device for performance enhancement of vertical axis hydrokinetic turbines: A 3D computational study.
    Botero N; Ratkovich N; Lain S; Lopez Mejia OD
    Heliyon; 2022 Aug; 8(8):e10017. PubMed ID: 35928101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.
    Batten WM; Harrison ME; Bahaj AS
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120293. PubMed ID: 23319711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrokinetic turbines for moderate sized rivers.
    Kirke B
    Energy Sustain Dev; 2020 Oct; 58():182-195. PubMed ID: 32952332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of wind turbine wakes using the actuator line technique.
    Sørensen JN; Mikkelsen RF; Henningson DS; Ivanell S; Sarmast S; Andersen SJ
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.
    Zhai X; Wu S; Liu B
    Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.
    Bachant P; Wosnik M; Gunawan B; Neary VS
    PLoS One; 2016; 11(9):e0163799. PubMed ID: 27684076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of turbulence on the wake of a marine current turbine simulator.
    Blackmore T; Batten WM; Bahaj AS
    Proc Math Phys Eng Sci; 2014 Oct; 470(2170):20140331. PubMed ID: 25294966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrokinetic turbine effects on fish swimming behaviour.
    Hammar L; Andersson S; Eggertsen L; Haglund J; Gullström M; Ehnberg J; Molander S
    PLoS One; 2013; 8(12):e84141. PubMed ID: 24358334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind turbine wake visualization and characteristics analysis by Doppler lidar.
    Wu S; Liu B; Liu J; Zhai X; Feng C; Wang G; Zhang H; Yin J; Wang X; Li R; Gallacher D
    Opt Express; 2016 May; 24(10):A762-80. PubMed ID: 27409950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.
    Churchfield MJ; Li Y; Moriarty PJ
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120421. PubMed ID: 23319713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish response to the presence of hydrokinetic turbines as a sustainable energy solution.
    Müller S; Muhawenimana V; Sonnino-Sorisio G; Wilson CAME; Cable J; Ouro P
    Sci Rep; 2023 May; 13(1):7459. PubMed ID: 37156821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of the shear flow effect on tidal turbine blade root force from three-dimensional mean flow reconstruction.
    Gaurier B; Druault P; Ikhennicheu M; Germain G
    Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20200001. PubMed ID: 32713318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish schooling as a basis for vertical axis wind turbine farm design.
    Whittlesey RW; Liska S; Dabiri JO
    Bioinspir Biomim; 2010 Sep; 5(3):035005. PubMed ID: 20729568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.
    Hong J; Toloui M; Chamorro LP; Guala M; Howard K; Riley S; Tucker J; Sotiropoulos F
    Nat Commun; 2014 Jun; 5():4216. PubMed ID: 24960397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.
    Hammar L; Eggertsen L; Andersson S; Ehnberg J; Arvidsson R; Gullström M; Molander S
    PLoS One; 2015; 10(3):e0117756. PubMed ID: 25730314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trailing-Edge Flap Control for Mitigating Rotor Power Fluctuations of a Large-Scale Offshore Floating Wind Turbine under the Turbulent Wind Condition.
    Xu B; Feng J; Wang T; Yuan Y; Zhao Z; Zhong W
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.
    Debnath M; Santoni C; Leonardi S; Iungo GV
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
    Xu BF; Wang TG; Yuan Y; Cao JF
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.