These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27925400)

  • 1. Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst.
    Wen G; Wang B; Wang C; Wang J; Tian Z; Schlögl R; Su DS
    Angew Chem Int Ed Engl; 2017 Jan; 56(2):600-604. PubMed ID: 27925400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass.
    Wang H; Zhuang J; Velado D; Wei Z; Matsui H; Zhou S
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27703-12. PubMed ID: 26615668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose.
    Li M; Li W; Liu S
    Carbohydr Res; 2011 Jun; 346(8):999-1004. PubMed ID: 21481847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR.
    Falco C; Perez Caballero F; Babonneau F; Gervais C; Laurent G; Titirici MM; Baccile N
    Langmuir; 2011 Dec; 27(23):14460-71. PubMed ID: 22050004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass.
    Reza MT; Wirth B; Lüder U; Werner M
    Bioresour Technol; 2014 Oct; 169():352-361. PubMed ID: 25063978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step Preparation of Carbon-based Solid Acid Catalyst from Water Hyacinth Leaves for Esterification of Oleic Acid and Dehydration of Xylose.
    Laohapornchaiphan J; Smith CB; Smith SM
    Chem Asian J; 2017 Dec; 12(24):3178-3186. PubMed ID: 29068149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.
    Krishnan D; Raidongia K; Shao J; Huang J
    ACS Nano; 2014 Jan; 8(1):449-57. PubMed ID: 24298909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of the hydrothermal carbonization process for the degradation of organic pollutants.
    Weiner B; Baskyr I; Poerschmann J; Kopinke FD
    Chemosphere; 2013 Jul; 92(6):674-80. PubMed ID: 23608468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering carbon materials from the hydrothermal carbonization process of biomass.
    Hu B; Wang K; Wu L; Yu SH; Antonietti M; Titirici MM
    Adv Mater; 2010 Feb; 22(7):813-28. PubMed ID: 20217791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates.
    Cao X; Peng X; Sun S; Zhong L; Chen W; Wang S; Sun RC
    Carbohydr Polym; 2015 Mar; 118():44-51. PubMed ID: 25542106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres.
    Braghiroli FL; Fierro V; Izquierdo MT; Parmentier J; Pizzi A; Celzard A
    Bioresour Technol; 2014 Jan; 151():271-7. PubMed ID: 24246483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process.
    Hu B; Yu SH; Wang K; Liu L; Xu XW
    Dalton Trans; 2008 Oct; (40):5414-23. PubMed ID: 19082021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study.
    Sirijaraensre J; Limtrakul J
    Phys Chem Chem Phys; 2009 Jan; 11(3):578-85. PubMed ID: 19283276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal carbonization of agricultural residues.
    Oliveira I; Blöhse D; Ramke HG
    Bioresour Technol; 2013 Aug; 142():138-46. PubMed ID: 23735795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphonate functionalized carbon spheres as Brønsted acid catalysts for the valorization of bio-renewable α-pinene oxide to trans-carveol.
    Singh AS; Advani JH; Biradar AV
    Dalton Trans; 2020 Jun; 49(21):7210-7217. PubMed ID: 32420571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions.
    Moreno-Castilla C
    Adv Colloid Interface Sci; 2016 Oct; 236():113-41. PubMed ID: 27530712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.